wordpress下載主題demo北京網(wǎng)站優(yōu)化培訓(xùn)
機(jī)器學(xué)習(xí)筆記之優(yōu)化算法——梯度下降法在凸函數(shù)上的收斂性
- 引言
- 回顧:
- 收斂速度:次線性收斂
- 二次上界引理
- 梯度下降法在凸函數(shù)上的收斂性
- 收斂性定理介紹
- 證明過(guò)程
引言
本節(jié)將介紹梯度下降法在凸函數(shù)上的收斂性。
回顧:
收斂速度:次線性收斂
關(guān)于次線性收斂,分為兩種判別類型: R \mathcal R R-次線性收斂與 Q \mathcal Q Q-次線性收斂。而次線性收斂的特點(diǎn)是:隨著迭代次數(shù)的增加,相鄰迭代步驟產(chǎn)生的目標(biāo)函數(shù)結(jié)果 f ( x k ) , f ( x k + 1 ) f(x_k),f(x_{k+1}) f(xk?),f(xk+1?),其差異性幾乎完全相同:
lim ? k ? ∞ ∣ ∣ x k + 1 ? x ? ∣ ∣ ∣ ∣ x k ? x ? ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 k?∞lim?∣∣xk??x?∣∣∣∣xk+1??x?∣∣?=1
例如:如果數(shù)值解 x k x_k xk?的目標(biāo)函數(shù)結(jié)果 f ( x k ) f(x_k) f(xk?)與目標(biāo)函數(shù)最優(yōu)解 f ? f^* f?之間的差異性 ∣ ∣ f ( x k ) ? f ? ∣ ∣ ||f(x_k) - f^*|| ∣∣f(xk?)?f?∣∣與迭代次數(shù) k k k存在如下函數(shù)關(guān)系 G ( k ) \mathcal G(k) G(k):
∣ ∣ f ( x k ) ? f ? ∣ ∣ ≤ G ( k ) = 1 k ||f(x_k) - f^*|| \leq \mathcal G(k) = \frac{1}{k} ∣∣f(xk?)?f?∣∣≤G(k)=k1?
當(dāng) k k k充分大時(shí), f ( x k ) , f ( x k + 1 ) f(x_k),f(x_{k+1}) f(xk?),f(xk+1?)與 f ? f^* f?之間差異性的比值表示如下:
lim ? k ? ∞ ∣ ∣ f ( x k + 1 ) ? f ? ∣ ∣ ∣ ∣ f ( x k ) ? f ? ∣ ∣ = lim ? k ? ∞ k k + 1 = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{k}{k+1} = 1 k?∞lim?∣∣f(xk?)?f?∣∣∣∣f(xk+1?)?f?∣∣?=k?∞lim?k+1k?=1
也就是說(shuō):雖然隨著 k k k的增加, f ( x k ) f(x_k) f(xk?)在減小;但相鄰迭代結(jié)果 f ( x k ) , f ( x k + 1 ) f(x_k),f(x_{k+1}) f(xk?),f(xk+1?)之間的差異性幾乎可以忽略不計(jì)。那么稱這種收斂速度為次線性收斂。
準(zhǔn)確的說(shuō),是
? 0 \Rightarrow 0 ?0的次線性收斂:
lim ? k ? ∞ { f ( x k ) } ? lim ? k ? ∞ G ( k ) = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} \{f(x_k)\} \Rightarrow \mathop{\lim}\limits_{k \Rightarrow \infty} \mathcal G(k) = 0 k?∞lim?{f(xk?)}?k?∞lim?G(k)=0
二次上界引理
關(guān)于二次上界引理的描述表示如下:如果函數(shù) f ( ? ) f(\cdot) f(?)可微,并對(duì)應(yīng)梯度函數(shù) ? f ( ? ) \nabla f(\cdot) ?f(?)滿足利普希茲連續(xù),則函數(shù) f ( ? ) f(\cdot) f(?)存在二次上界。即:
? x , y ∈ R n ? f ( y ) ≤ f ( x ) + [ ? f ( x ) ] T ( y ? x ) + L 2 ∣ ∣ y ? x ∣ ∣ 2 \forall x,y \in \mathbb R^n \Rightarrow f(y) \leq f(x) + [\nabla f(x)]^T (y - x) + \frac{\mathcal L}{2}||y - x||^2 ?x,y∈Rn?f(y)≤f(x)+[?f(x)]T(y?x)+2L?∣∣y?x∣∣2
而二次上界引理的作用是:可以通過(guò)該引理,得到最優(yōu)步長(zhǎng)上界的最小值:
- 假設(shè) x x x固定,令 ? ( y ) = f ( x ) + [ ? f ( x ) ] T ( y ? x ) + L 2 ∣ ∣ y ? x ∣ ∣ 2 \begin{aligned}\phi(y) = f(x) + [\nabla f(x)]^T (y - x) + \frac{\mathcal L}{2}||y - x||^2 \end{aligned} ?(y)=f(x)+[?f(x)]T(y?x)+2L?∣∣y?x∣∣2?,通過(guò)選擇合適的 y m i n y_{min} ymin?,使 ? ( y ) \phi(y) ?(y)達(dá)到最小值:
y m i n = arg ? min ? y ∈ R n ? ( y ) y_{min} = \mathop{\arg\min}\limits_{y \in \mathbb R^n} \phi(y) ymin?=y∈Rnargmin??(y) - 令 ? ? ( y ) ? 0 \nabla \phi(y) \triangleq 0 ??(y)?0,有:
y m i n = x + 1 L ? [ ? ? f ( x ) ] y_{min} = x + \frac{1}{\mathcal L} \cdot [- \nabla f(x)] ymin?=x+L1??[??f(x)] - 其中 ? ? f ( x ) - \nabla f(x) ??f(x)即 P k \mathcal P_k Pk?,也就是最速下降方向;而 1 L \begin{aligned}\frac{1}{\mathcal L}\end{aligned} L1??則是最優(yōu)步長(zhǎng)的上確界:
f ( y ) ≤ ? ( y m i n ) = min ? y ∈ R n ? ( y ) f(y) \leq \phi(y_{min}) = \mathop{\min}\limits_{y \in \mathbb R^n} \phi(y) f(y)≤?(ymin?)=y∈Rnmin??(y)
也就是說(shuō):- 在沒(méi)有二次上界引理的約束下,步長(zhǎng) α k \alpha_k αk?的選擇在其定義域內(nèi)沒(méi)有約束: ( 0 , + ∞ ) (0, +\infty) (0,+∞);
- 經(jīng)過(guò)二次上界引理的約束后,步長(zhǎng) α k \alpha_k αk?的選擇從原始的 ( 0 , + ∞ ) (0,+\infty) (0,+∞)約束至 ( 0 , 1 L ] \begin{aligned}\left(0,\frac{1}{\mathcal L}\right]\end{aligned} (0,L1?]?。
延伸:關(guān)于區(qū)間 ( 0 , 1 L ] \begin{aligned}\left(0,\frac{1}{\mathcal L}\right]\end{aligned} (0,L1?]?可以模糊地認(rèn)為滿足 Armijo \text{Armijo} Armijo準(zhǔn)則。關(guān)于步長(zhǎng)變量 α \alpha α的函數(shù) ? ( α ) = f ( x k + 1 ) \phi(\alpha) = f(x_{k+1}) ?(α)=f(xk+1?)中,當(dāng) α ∈ ( 0 , 1 L ] \alpha \in \begin{aligned}\left(0,\frac{1}{\mathcal L}\right]\end{aligned} α∈(0,L1?]?時(shí),等價(jià)于:存在一條直線 L ( α ) \mathcal L(\alpha) L(α),以該直線作為劃分邊界對(duì)應(yīng) α \alpha α的范圍正好是 ( 0 , 1 L ] \begin{aligned}\left(0,\frac{1}{\mathcal L}\right]\end{aligned} (0,L1?]?:
吐槽:實(shí)際上用這張圖是不太合理的,因?yàn)橄旅娴膱D對(duì)應(yīng)的
f ( ? ) f(\cdot) f(?)更加復(fù)雜,二次上界約束的范圍僅僅在下面
α \alpha α軸的
綠色實(shí)線部分,但很明顯,在該函數(shù)中,存在更優(yōu)質(zhì)的
α \alpha α結(jié)果。
梯度下降法在凸函數(shù)上的收斂性
收斂性定理介紹
梯度下降法在凸函數(shù)上的收斂性定理表示如下:
- 條件:
- 函數(shù) f ( ? ) f(\cdot) f(?)向下有界,在定義域內(nèi)可微,并且 f ( ? ) f(\cdot) f(?)是凸函數(shù);
- 關(guān)于 f ( ? ) f(\cdot) f(?)的梯度函數(shù) ? f ( ? ) \nabla f(\cdot) ?f(?)滿足利普希茲連續(xù);
- 梯度下降法迭代過(guò)程中步長(zhǎng) α k ( k = 1 , 2 , 3 , ? ) \alpha_k(k=1,2,3,\cdots) αk?(k=1,2,3,?)有明確的約束范圍: α k ∈ ( 0 , 1 L ] \begin{aligned}\alpha_k \in \left(0,\frac{1}{\mathcal L} \right]\end{aligned} αk?∈(0,L1?]?;
- 結(jié)論:數(shù)值解序列 { x k } k = 0 ∞ \{x_{k}\}_{k=0}^{\infty} {xk?}k=0∞?對(duì)應(yīng)的目標(biāo)函數(shù)結(jié)果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk?)}k=0∞?以 O ( 1 k ) \begin{aligned}\mathcal O \left(\frac{1}{k}\right)\end{aligned} O(k1?)?收斂于目標(biāo)函數(shù)最優(yōu)解 f ? f^* f?。
其中
O ( 1 k ) \begin{aligned}\mathcal O \left(\frac{1}{k}\right)\end{aligned} O(k1?)?表示以
G ( k ) = C ? 1 k \begin{aligned}\mathcal G(k) = \mathcal C \cdot \frac{1}{k}\end{aligned} G(k)=C?k1??的
次線性收斂級(jí)別的收斂速度(
C \mathcal C C為常數(shù))。
證明過(guò)程
根據(jù)二次上界引理,依然將 x x x設(shè)為上一次迭代的數(shù)值解 x i ? 1 x_{i-1} xi?1?,對(duì)應(yīng)的 y y y為當(dāng)前迭代步驟的數(shù)值解 x i x_i xi?。由于是梯度下降法,因而在線搜索方法的基礎(chǔ)上,將方向 P i \mathcal P_i Pi?表示為最速下降方向 ? f ( x i ? 1 ) \nabla f(x_{i-1}) ?f(xi?1?)步長(zhǎng)依然使用步長(zhǎng)變量 α \alpha α進(jìn)行表示:
y ? x = x i ? x i ? 1 = ? ? f ( x i ? 1 ) ? α y - x = x_i - x_{i - 1} = -\nabla f(x_{i-1}) \cdot \alpha y?x=xi??xi?1?=??f(xi?1?)?α
將二次上界不等式進(jìn)行相應(yīng)替換:
將上式代入~
f ( x i ) ≤ f ( x i ? 1 ) + [ ? f ( x i ? 1 ) ] T [ ? ? f ( x i ? 1 ) ? α ] + L 2 ∣ ∣ ? ? f ( x i ? 1 ) ? α ∣ ∣ 2 f(x_i) \leq f(x_{i-1}) + [\nabla f(x_{i-1})]^T [-\nabla f(x_{i-1}) \cdot \alpha] + \frac{\mathcal L}{2} ||-\nabla f(x_{i-1}) \cdot \alpha||^2 f(xi?)≤f(xi?1?)+[?f(xi?1?)]T[??f(xi?1?)?α]+2L?∣∣??f(xi?1?)?α∣∣2
觀察不等式右側(cè),可以繼續(xù)化簡(jiǎn):
將內(nèi)積寫(xiě)作
∣ ∣ ? ∣ ∣ 2 ||\cdot||^2 ∣∣?∣∣2的形式。
- ∣ ∣ ? ? f ( x i ? 1 ) ? α ∣ ∣ 2 = ∣ ∣ ? f ( x i ? 1 ) ? α ∣ ∣ 2 ||- \nabla f(x_{i-1}) \cdot \alpha||^2 = ||\nabla f(x_{i-1}) \cdot \alpha||^2 ∣∣??f(xi?1?)?α∣∣2=∣∣?f(xi?1?)?α∣∣2
,這里消掉一個(gè)負(fù)號(hào);
由于
α ∈ ( 0 , 1 L ] \begin{aligned}\alpha \in \left(0,\frac{1}{\mathcal L}\right]\end{aligned} α∈(0,L1?]?,是一個(gè)標(biāo)量,直接將其提到范數(shù)外側(cè)。
I r i g h t = f ( x i ? 1 ) ? α ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 + L 2 ? α 2 ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 \mathcal I_{right} = f(x_{i-1}) - \alpha \cdot ||\nabla f(x_{i-1})||^2 + \frac{\mathcal L}{2} \cdot \alpha^2 \cdot ||\nabla f(x_{i-1})||^2 Iright?=f(xi?1?)?α?∣∣?f(xi?1?)∣∣2+2L??α2?∣∣?f(xi?1?)∣∣2
由 α ≤ 1 L \begin{aligned}\alpha \leq \frac{1}{\mathcal L}\end{aligned} α≤L1??可知: L ≤ 1 α \begin{aligned}\mathcal L \leq \frac{1}{\alpha} \end{aligned} L≤α1??。將該式代入到上式中:
消掉分母中的
α \alpha α,并于前面的項(xiàng)結(jié)合。
I r i g h t ≤ f ( x i ? 1 ) ? α ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 + 1 2 α ? α 2 ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 = f ( x i ? 1 ) ? α 2 ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 \begin{aligned} \mathcal I_{right} & \leq f(x_{i-1}) - \alpha \cdot ||\nabla f(x_{i-1})||^2 + \frac{1}{2 \alpha} \cdot \alpha^2 \cdot ||\nabla f(x_{i-1})||^2 \\ & = f(x_{i-1}) - \frac{\alpha}{2} \cdot ||\nabla f(x_{i-1})||^2 \end{aligned} Iright??≤f(xi?1?)?α?∣∣?f(xi?1?)∣∣2+2α1??α2?∣∣?f(xi?1?)∣∣2=f(xi?1?)?2α??∣∣?f(xi?1?)∣∣2?
基于梯度下降法,使用二次上界引理,可以得到 f ( x i ? 1 ) f(x_{i-1}) f(xi?1?)與 f ( x i ) f(x_i) f(xi?)之間存在如下關(guān)聯(lián)關(guān)系:
f ( x i ) ≤ f ( x i ? 1 ) ? α 2 ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 i = 1 , 2 , 3 , ? f(x_i) \leq f(x_{i-1}) - \frac{\alpha}{2} \cdot ||\nabla f(x_{i-1})||^2\quad i=1,2,3,\cdots f(xi?)≤f(xi?1?)?2α??∣∣?f(xi?1?)∣∣2i=1,2,3,?
根據(jù)凸函數(shù)的性質(zhì),必然有:函數(shù) f ( ? ) f(\cdot) f(?)任一位置的切線, f ( ? ) f(\cdot) f(?)均在該切線上方。見(jiàn)下圖:
由于條件:
f ( ? ) f(\cdot) f(?)向下有界,因此,該函數(shù)必然’開(kāi)口向上‘。
其中紅色點(diǎn) ( x ? , f ? ) (x^*,f^*) (x?,f?)表示最優(yōu)點(diǎn),以上一次迭代產(chǎn)生的 x i ? 1 x_{i-1} xi?1?為切點(diǎn)做一條切線,必然有 x ? x^* x?在該切線函數(shù)上的函數(shù)值 f ′ ≤ f ? f' \leq f^* f′≤f?。 f ′ f' f′表示如下:
f ′ = f ( x i ? 1 ) ? [ ? f ( x i ? 1 ) ] T ( x i ? 1 ? x ? ) ≤ f ? f' = f(x_{i-1}) - [\nabla f(x_{i-1})]^T (x_{i-1} - x^*) \leq f^* f′=f(xi?1?)?[?f(xi?1?)]T(xi?1??x?)≤f?
移項(xiàng),從而有:
f ( x i ? 1 ) ≤ f ? + [ ? f ( x i ? 1 ) ] T ( x i ? 1 ? x ? ) f(x_{i-1}) \leq f^* + [\nabla f(x_{i-1})]^T (x_{i-1} - x^*) f(xi?1?)≤f?+[?f(xi?1?)]T(xi?1??x?)
將上式代入,有:
I r i g h t ≤ f ? + [ ? f ( x i ? 1 ) ] T ( x i ? 1 ? x ? ) ? 替換 f ( x i ? 1 ) ? α 2 ? ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 \mathcal I_{right} \leq \underbrace{f^* + [\nabla f(x_{i-1})]^T (x_{i-1} - x^*)}_{替換f(x_{i-1})}- \frac{\alpha}{2} \cdot ||\nabla f(x_{i-1})||^2 Iright?≤替換f(xi?1?) f?+[?f(xi?1?)]T(xi?1??x?)???2α??∣∣?f(xi?1?)∣∣2
為了湊平方項(xiàng),將上式調(diào)整至如下形式:
將
? α 2 \begin{aligned}-\frac{\alpha}{2}\end{aligned} ?2α??湊出
α 2 \alpha^2 α2,其他項(xiàng)跟隨變化。
I r i g h t ≤ ? 1 2 α { α 2 ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 ? 2 α ? [ ? f ( x i ? 1 ) ] T ( x i ? 1 ? x ? ) } \mathcal I_{right} \leq -\frac{1}{2 \alpha} \left\{\alpha^2 ||\nabla f(x_{i-1})||^2 - 2\alpha \cdot [\nabla f(x_{i-1})]^T(x_{i-1} - x^*)\right\} Iright?≤?2α1?{α2∣∣?f(xi?1?)∣∣2?2α?[?f(xi?1?)]T(xi?1??x?)}
對(duì)大括號(hào)內(nèi)的項(xiàng)進(jìn)行配方:
I r i g h t ≤ f ? ? 1 2 α { α 2 ∣ ∣ ? f ( x i ? 1 ) ∣ ∣ 2 ? 2 α ? [ ? f ( x i ? 1 ) ] T ( x i ? 1 ? x ? ) + ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 ? 平方項(xiàng) ? ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 } = f ? ? 1 2 α [ ∣ ∣ α ? ? f ( x i ? 1 ) ? ( x i ? 1 ? x ? ) ∣ ∣ 2 ? ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 ] \begin{aligned} \mathcal I_{right} & \leq f^* - \frac{1}{2 \alpha} \left\{\underbrace{\alpha^2 ||\nabla f(x_{i-1})||^2 - 2\alpha \cdot [\nabla f(x_{i-1})]^T(x_{i-1} - x^*) + ||x_{i-1} - x^*||^2 }_{平方項(xiàng)}- ||x_{i-1} - x^*||^2\right\} \\ & = f^* - \frac{1}{2\alpha} \left [||\alpha \cdot \nabla f(x_{i-1}) - (x_{i-1} - x^*)||^2 - ||x_{i-1} - x^*||^2\right] \end{aligned} Iright??≤f??2α1?? ? ??平方項(xiàng) α2∣∣?f(xi?1?)∣∣2?2α?[?f(xi?1?)]T(xi?1??x?)+∣∣xi?1??x?∣∣2???∣∣xi?1??x?∣∣2? ? ??=f??2α1?[∣∣α??f(xi?1?)?(xi?1??x?)∣∣2?∣∣xi?1??x?∣∣2]?
觀察中括號(hào)內(nèi)第一項(xiàng): ∣ ∣ α ? ? f ( x i ? 1 ) ? ( x i ? 1 ? x ? ) ∣ ∣ 2 ||\alpha \cdot \nabla f(x_{i-1}) - (x_{i-1} - x^*)||^2 ∣∣α??f(xi?1?)?(xi?1??x?)∣∣2,由于是范數(shù)的平方項(xiàng),因而在范數(shù)內(nèi)部添加一個(gè)負(fù)號(hào)不會(huì)影響其值的變化:
∣ ∣ α ? ? f ( x i ? 1 ) ? ( x i ? 1 ? x ? ) ∣ ∣ 2 = ∣ ∣ x i ? 1 ? α ? ? f ( x i ? 1 ) ? x ? ∣ ∣ 2 ||\alpha \cdot \nabla f(x_{i-1}) - (x_{i-1} - x^*)||^2 = ||x_{i-1} - \alpha \cdot \nabla f(x_{i-1}) - x^*||^2 ∣∣α??f(xi?1?)?(xi?1??x?)∣∣2=∣∣xi?1??α??f(xi?1?)?x?∣∣2
從迭代角度觀察: x i ? 1 ? α ? ? f ( x i ? 1 ) = x i x_{i-1} - \alpha \cdot \nabla f(x_{i-1}) = x_{i} xi?1??α??f(xi?1?)=xi?,從而上式可繼續(xù)化簡(jiǎn)為:
提一個(gè)負(fù)號(hào),調(diào)換一下位置。
{ ∣ ∣ α ? ? f ( x i ? 1 ) ? ( x i ? 1 ? x ? ) ∣ ∣ 2 = ∣ ∣ x i ? x ? ∣ ∣ 2 I r i g h t ≤ f ? ? 1 2 α [ ∣ ∣ x i ? x ? ∣ ∣ 2 ? ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 ] = f ? + 1 2 α [ ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 ? ∣ ∣ x i ? x ? ∣ ∣ 2 ] \begin{cases} ||\alpha \cdot \nabla f(x_{i-1}) - (x_{i-1} - x^*)||^2 = ||x_i - x^*||^2 \\ \quad \\ \begin{aligned} \mathcal I_{right} & \leq f^* - \frac{1}{2\alpha} \left[||x_i - x^*||^2 - ||x_{i-1} - x^*||^2\right] \\ & = f^* + \frac{1}{2\alpha} \left[||x_{i-1} - x^*||^2 - ||x_i - x^*||^2\right] \end{aligned} \end{cases} ? ? ??∣∣α??f(xi?1?)?(xi?1??x?)∣∣2=∣∣xi??x?∣∣2Iright??≤f??2α1?[∣∣xi??x?∣∣2?∣∣xi?1??x?∣∣2]=f?+2α1?[∣∣xi?1??x?∣∣2?∣∣xi??x?∣∣2]??
至此,可以得到如下不等式結(jié)果:
f ( x i ) ? f ? ≤ 1 2 α ( ∣ ∣ x i ? 1 ? x ? ∣ ∣ 2 ? ∣ ∣ x i ? x ? ∣ ∣ 2 ) f(x_i) - f^* \leq \frac{1}{2\alpha}(||x_{i-1} - x^*||^2 - ||x_i - x^*||^2) f(xi?)?f?≤2α1?(∣∣xi?1??x?∣∣2?∣∣xi??x?∣∣2)
觀察:不等式左側(cè)描述的意義是:當(dāng)前迭代步驟的目標(biāo)函數(shù)結(jié)果 f ( x i ) f(x_i) f(xi?)與最優(yōu)解 f ? f^* f?之間的偏差。從初始化數(shù)值解 x 0 x_0 x0?開(kāi)始,我們會(huì)得到一系列的不等式結(jié)果:
{ f ( x 1 ) ? f ? ≤ 1 2 α ( ∣ ∣ x 0 ? x ? ∣ ∣ 2 ? ∣ ∣ x 1 ? x ? ∣ ∣ 2 ) f ( x 2 ) ? f ? ≤ 1 2 α ( ∣ ∣ x 1 ? x ? ∣ ∣ 2 ? ∣ ∣ x 2 ? x ? ∣ ∣ 2 ) ? f ( x k ) ? f ? ≤ 1 2 α ( ∣ ∣ x k ? 1 ? x ? ∣ ∣ 2 ? ∣ ∣ x k ? x ? ∣ ∣ 2 ) \begin{cases} \begin{aligned} f(x_1) - f^* & \leq \frac{1}{2\alpha} (||x_0 - x^*||^2 - ||x_1 - x^*||^2) \\ f(x_2) - f^* & \leq \frac{1}{2\alpha} (||x_1 - x^*||^2 - ||x_2 - x^*||^2) \\ & \vdots \\ f(x_k) - f^* & \leq \frac{1}{2\alpha} (||x_{k-1} - x^*||^2 - ||x_k - x^*||^2) \end{aligned} \end{cases} ? ? ??f(x1?)?f?f(x2?)?f?f(xk?)?f??≤2α1?(∣∣x0??x?∣∣2?∣∣x1??x?∣∣2)≤2α1?(∣∣x1??x?∣∣2?∣∣x2??x?∣∣2)?≤2α1?(∣∣xk?1??x?∣∣2?∣∣xk??x?∣∣2)??
將這些不等式對(duì)應(yīng)位置相加,有:
等式右側(cè)的中間項(xiàng)都被消掉了~
因?yàn)?/code> ∣ ∣ x k ? x ? ∣ ∣ 2 ≥ 0 ||x_k - x^*||^2 \geq 0 ∣∣xk??x?∣∣2≥0
恒成立,從而消掉含變量的項(xiàng)。
∑ i = 1 k [ f ( x i ) ? f ? ] ≤ 1 2 α ( ∣ ∣ ∣ x 0 ? x ? ∣ ∣ 2 ? ∣ ∣ x k ? x ? ∣ ∣ 2 ) ≤ 1 2 α ∣ ∣ x 0 ? x ? ∣ ∣ 2 \sum_{i=1}^k [f(x_i) - f^*] \leq \frac{1}{2\alpha}(|||x_0 - x^*||^2 - ||x_k - x^*||^2) \leq \frac{1}{2 \alpha} ||x_0 - x^*||^2 i=1∑k?[f(xi?)?f?]≤2α1?(∣∣∣x0??x?∣∣2?∣∣xk??x?∣∣2)≤2α1?∣∣x0??x?∣∣2
關(guān)于我們要證的 ∣ ∣ f ( x k ) ? f ? ∣ ∣ ||f(x_k) - f^*|| ∣∣f(xk?)?f?∣∣,可以表示為如下形式:
由于優(yōu)化問(wèn)題的收斂性,必然有
: f ( x k ) ≤ f ( x k ? 1 ) ≤ ? ≤ f ( x 1 ) f(x_{k}) \leq f(x_{k-1})\leq \cdots\leq f(x_1) f(xk?)≤f(xk?1?)≤?≤f(x1?),從而每一項(xiàng):
∣ ∣ f ( x k ) ? f ? ∣ ∣ ≤ ∣ ∣ f ( x k ? 1 ) ? f ? ∣ ∣ ≤ ? ≤ ∣ ∣ f ( x 1 ) ? f ? ∣ ∣ ||f(x_k) - f^*|| \leq ||f(x_{k-1}) - f^*|| \leq \cdots \leq ||f(x_1) - f^*|| ∣∣f(xk?)?f?∣∣≤∣∣f(xk?1?)?f?∣∣≤?≤∣∣f(x1?)?f?∣∣,從而有:
∑ i = 1 k [ f ( x k ) ? f ? ] ≤ ∑ i = 1 k [ f ( x i ) ? f ? ] \begin{aligned}\sum_{i=1}^k[f(x_k) - f^*] \leq \sum_{i=1}^{k} [f(x_i) - f^*]\end{aligned} i=1∑k?[f(xk?)?f?]≤i=1∑k?[f(xi?)?f?]?。將上式結(jié)果帶入~
f ( x k ) ? f ? = 1 k ∑ i = 1 k [ f ( x k ) ? f ? ] ≤ 1 k ∑ i = 1 k [ f ( x i ) ? f ? ] ≤ 1 k [ 1 2 α ∣ ∣ x 0 ? x ? ∣ ∣ 2 ] f(x_k) - f^* = \frac{1}{k} \sum_{i=1}^{k}[f(x_k) - f^*] \leq \frac{1}{k} \sum_{i=1}^{k}[f(x_i) - f^*] \leq \frac{1}{k} \left[\frac{1}{2\alpha}||x_0 - x^*||^2\right] f(xk?)?f?=k1?i=1∑k?[f(xk?)?f?]≤k1?i=1∑k?[f(xi?)?f?]≤k1?[2α1?∣∣x0??x?∣∣2]
觀察: [ 1 2 α ∣ ∣ x 0 ? x ? ∣ ∣ 2 ] \begin{aligned}\left[\frac{1}{2\alpha}||x_0 - x^*||^2\right]\end{aligned} [2α1?∣∣x0??x?∣∣2]?中 α ∈ ( 0 , 1 L ] \begin{aligned}\alpha \in \left(0,\frac{1}{\mathcal L} \right] \end{aligned} α∈(0,L1?]?, x 0 , x ? x_0,x^* x0?,x?都是確定的常數(shù),因而該項(xiàng)可視作常數(shù) C \mathcal C C。最終有:
f ( x k ) ? f ? ≤ 1 k ? C f(x_k) - f^* \leq \frac{1}{k} \cdot \mathcal C f(xk?)?f?≤k1??C
我們可以令 G ( k ) = 1 k ? C \begin{aligned}\mathcal G(k) = \frac{1}{k} \cdot \mathcal C\end{aligned} G(k)=k1??C?,可以看出:它就是一個(gè)級(jí)別為 1 k \begin{aligned}\frac{1}{k}\end{aligned} k1??的次線性收斂。
相關(guān)參考:
【優(yōu)化算法】梯度下降法-凸函數(shù)的收斂性