做設計網(wǎng)站模塊的網(wǎng)站軟文代寫價格
隱函數(shù)的偏導數(shù)
二元方程的隱函數(shù)
F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
推出隱函數(shù)形式 y = y ( x ) y=y(x) y=y(x). 欲求 d y d x \frac{d y}{d x} dxdy? 需要對 F = 0 F=0 F=0 兩邊同時對 x x x 求全導
0 = d d x F ( x , y ( x ) ) = ? F ? x d x d x + ? F ? y d y d x = ? F ? x d x d x + ? F ? y d y d x 0 = \fracvxwlu0yf4{dx} F(x,y(x))= \frac{\partial F}{\partial x} \frac{dx}{dx}+\frac{\partial F}{\partial y} \frac{dy}{dx}=\frac{\partial F}{\partial x} \frac{dx}{dx}+\frac{\partial F}{\partial y} \frac{dy}{dx} 0=dxd?F(x,y(x))=?x?F?dxdx?+?y?F?dxdy?=?x?F?dxdx?+?y?F?dxdy?
求出 d y d x = ? ? F ? x ? F ? y \frac{dy}{dx}= -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} dxdy?=??y?F??x?F??
三元方程(組)的隱函數(shù)
三元方程
F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0,
推出隱函數(shù)形式 z = z ( x , y ) z=z(x,y) z=z(x,y). 欲求 ? z ? x \frac{\partial z}{\partial x} ?x?z? 需要對 F = 0 F=0 F=0 兩邊同時對 x x x 求偏導
0 = ? F ? x + ? F ? z ? z ? x 0=\frac{\partial F}{\partial x} +\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} 0=?x?F?+?z?F??x?z?
求出 ? z ? x = ? ? F ? x ? F ? z \frac{\partial z}{\partial x}= -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} ?x?z?=??z?F??x?F??
兩個三元方程
F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0, G ( x , y , z ) = 0 G(x,y,z)=0 G(x,y,z)=0
推出隱函數(shù)形式 z = z ( x ) , y = y ( x ) z=z(x), y=y(x) z=z(x),y=y(x) 欲求 d z d x \frac{d z}{dx} dxdz? 需要對 F = 0 , G = 0 F=0,G=0 F=0,G=0 兩邊同時對 x x x 求全導
0 = ? F ? x + ? F ? y d y d x + ? F ? z d z d x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\frac{dy}{dx}+\frac{\partial F}{\partial z}\frac{dz}{dx} 0=?x?F?+?y?F?dxdy?+?z?F?dxdz?
0 = ? G ? x + ? G ? y d y d x + ? G ? z d z d x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y}\frac{dy}{dx}+\frac{\partial G}{\partial z}\frac{dz}{dx} 0=?x?G?+?y?G?dxdy?+?z?G?dxdz?
根據(jù)克拉姆法則,
J = ? ( F , G ) ? ( y , z ) = ∣ ? F ? y ? F ? z ? G ? y ? G ? z ∣ J=\frac{\partial (F,G)}{\partial(y,z)}= \left|\begin{array}{c c} \frac{\partial F}{\partial y} &\frac{\partial F}{\partial z} \\\\ \frac{\partial G}{\partial y} &\frac{\partial G}{\partial z}\end{array}\right| J=?(y,z)?(F,G)?= ??y?F??y?G???z?F??z?G?? ?
d y d x = ? 1 J ? ( F , G ) ? ( x , z ) \frac{d y}{d x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (x,z)} dxdy?=?J1??(x,z)?(F,G)? d z d x = ? 1 J ? ( F , G ) ? ( y , x ) \frac{d z}{d x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (y,x)} dxdz?=?J1??(y,x)?(F,G)?
四元方程(組)的隱函數(shù)
四元函數(shù)方程
F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0,
推出隱函數(shù)形式 w = w ( x , y , z ) w=w(x,y,z) w=w(x,y,z)
0 = ? F ? x + ? F ? w ? w ? x 0= \frac{\partial F}{\partial x}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial x} 0=?x?F?+?w?F??x?w? 求出
? w ? x = ? ? F ? x ? F ? w \frac{\partial w}{\partial x}= - \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial w}} ?x?w?=??w?F??x?F?? 類似的
? w ? y = ? ? F ? y ? F ? w \frac{\partial w}{\partial y}= - \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial w}} ?y?w?=??w?F??y?F?? ? w ? z = ? ? F ? z ? F ? w \frac{\partial w}{\partial z}= - \frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial w}} ?z?w?=??w?F??z?F??
兩個四元函數(shù)方程組
F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0, G ( x , y , z , w ) = 0 G(x,y,z,w)=0 G(x,y,z,w)=0 推出隱函數(shù)形式 z = z ( x , y ) z=z(x,y) z=z(x,y), w = w ( x , y ) w=w(x,y) w=w(x,y)
0 = ? F ? x + ? F ? z ? z ? x + ? F ? w ? w ? x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial x} 0=?x?F?+?z?F??x?z?+?w?F??x?w?
0 = ? G ? x + ? G ? z ? z ? x + ? G ? w ? w ? x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial G}{\partial w} \frac{\partial w}{\partial x} 0=?x?G?+?z?G??x?z?+?w?G??x?w?
根據(jù)克拉姆法則, J = ? ( F , G ) ? ( z , w ) = ∣ ? F ? z ? F ? w ? G ? z ? G ? w ∣ J=\frac{\partial (F,G)}{\partial(z,w)}= \left|\begin{matrix}\frac{\partial F}{\partial z} &\frac{\partial F}{\partial w}\\\\\frac{\partial G}{\partial z} &\frac{\partial G}{\partial w}\end{matrix}\right| J=?(z,w)?(F,G)?= ??z?F??z?G???w?F??w?G?? ?
? z ? x = ? 1 J ? ( F , G ) ? ( x , w ) \frac{\partial z}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (x,w)} ?x?z?=?J1??(x,w)?(F,G)? ? w ? x = ? 1 J ? ( F , G ) ? ( z , x ) \frac{\partial w}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (z,x)} ?x?w?=?J1??(z,x)?(F,G)?
類似的由 0 = ? F ? y + ? F ? z ? z ? y + ? F ? w ? w ? y 0=\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial y} 0=?y?F?+?z?F??y?z?+?w?F??y?w? 0 = ? G ? y + ? G ? z ? z ? y + ? G ? w ? w ? y 0=\frac{\partial G}{\partial y}+\frac{\partial G}{\partial z} \frac{\partial z}{\partial y}+\frac{\partial G}{\partial w} \frac{\partial w}{\partial y} 0=?y?G?+?z?G??y?z?+?w?G??y?w? 得到
? z ? y = ? 1 J ? ( F , G ) ? ( y , w ) \frac{\partial z}{\partial y} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (y,w)} ?y?z?=?J1??(y,w)?(F,G)? ? w ? y = ? 1 J ? ( F , G ) ? ( z , y ) \frac{\partial w}{\partial y} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (z,y)} ?y?w?=?J1??(z,y)?(F,G)?
三個四元函數(shù)方程組
F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0, G ( x , y , z , w ) = 0 G(x,y,z,w)=0 G(x,y,z,w)=0, H ( x , y , z , w ) = 0 H(x,y,z,w)=0 H(x,y,z,w)=0.
推出隱函數(shù)形式 y = y ( x ) , z = z ( x ) , w = w ( x ) y=y(x), z=z(x), w=w(x) y=y(x),z=z(x),w=w(x)
0 = ? F ? x + ? F ? y d y d x + ? F ? z d z d x + ? F ? w d w d x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial z} \frac{d z}{d x}+\frac{\partial F}{\partial w} \frac{d w}{d x} 0=?x?F?+?y?F?dxdy?+?z?F?dxdz?+?w?F?dxdw?
0 = ? G ? x + ? G ? y d y d x + ? G ? z d z d x + ? G ? w d w d x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \frac{d y}{d x}+\frac{\partial G}{\partial z} \frac{d z}{d x}+\frac{\partial G}{\partial w} \frac{d w}{d x} 0=?x?G?+?y?G?dxdy?+?z?G?dxdz?+?w?G?dxdw?
0 = ? H ? x + ? H ? y d y d x + ? H ? z d z d x + ? H ? w d w d x 0=\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y} \frac{d y}{d x}+\frac{\partial H}{\partial z} \frac{d z}{d x}+\frac{\partial H}{\partial w} \frac{d w}{d x} 0=?x?H?+?y?H?dxdy?+?z?H?dxdz?+?w?H?dxdw?
由克拉姆法則,
J = ? ( F , G , H ) ? ( y , z , w ) = ∣ ? F ? y ? F ? z ? F ? w ? G ? y ? G ? z ? G ? w ? H ? y ? H ? z ? H ? w ∣ J= \frac{\partial(F, G, H)}{\partial (y,z,w)} = \left| \begin{array}{c c c} \frac{\partial F}{\partial y} &\frac{\partial F}{\partial z} & \frac{\partial F}{\partial w} \\\\ \frac{\partial G}{\partial y}&\frac{\partial G}{\partial z} &\frac{\partial G}{\partial w} \\\\ \frac{\partial H}{\partial y}&\frac{\partial H}{\partial z} &\frac{\partial H}{\partial w}\end{array}\right| J=?(y,z,w)?(F,G,H)?= ??y?F??y?G??y?H???z?F??z?G??z?H???w?F??w?G??w?H?? ?
d y d x = ? 1 J ? ( F , G , H ) ? ( x , z , w ) \frac{d y}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (x,z,w)} dxdy?=?J1??(x,z,w)?(F,G,H)? d z d x = ? 1 J ? ( F , G , H ) ? ( y , x , w ) \frac{d z}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (y,x,w)} dxdz?=?J1??(y,x,w)?(F,G,H)? d w d x = ? 1 J ? ( F , G , H ) ? ( y , z , x ) \frac{d w}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (y,z,x)} dxdw?=?J1??(y,z,x)?(F,G,H)?
五元方程
兩個五元方程
F ( x , y , z , u , v ) = 0 F(x,y,z,u,v)=0 F(x,y,z,u,v)=0, G ( x , y , z , u , v ) = 0 G(x,y,z,u,v)=0 G(x,y,z,u,v)=0
推出隱函數(shù)形式 u = u ( x , y , z ) , v = v ( x , y , z ) u=u(x,y,z), v=v(x,y,z) u=u(x,y,z),v=v(x,y,z), 對 F = 0 , G = 0 F=0, G=0 F=0,G=0 同時對 x x x 求偏微分
0 = ? F ? x + ? F ? u ? u ? x + ? F ? v ? v ? x 0= \frac{\partial F}{\partial x} + \frac{\partial F}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial x} 0=?x?F?+?u?F??x?u?+?v?F??x?v? 0 = ? G ? x + ? G ? u ? u ? x + ? G ? v ? v ? x 0= \frac{\partial G}{\partial x} + \frac{\partial G}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial G}{\partial v}\frac{\partial v}{\partial x} 0=?x?G?+?u?G??x?u?+?v?G??x?v?
由克拉姆法則 J = ? ( F , G ) ? ( u , v ) J=\frac{\partial(F,G)}{\partial (u,v)} J=?(u,v)?(F,G)?, ? u ? x = ? 1 J ? ( F , G ) ? ( x , v ) \frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(x,v)} ?x?u?=?J1??(x,v)?(F,G)? ? v ? x = ? 1 J ? ( F , G ) ? ( u , x ) \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,x)} ?x?v?=?J1??(u,x)?(F,G)?
類似的
? u ? y = ? 1 J ? ( F , G ) ? ( y , v ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(y,v)} ?y?u?=?J1??(y,v)?(F,G)? ? u ? y = ? 1 J ? ( F , G ) ? ( u , y ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,y)} ?y?u?=?J1??(u,y)?(F,G)?
? u ? z = ? 1 J ? ( F , G ) ? ( z , v ) \frac{\partial u}{\partial z}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(z,v)} ?z?u?=?J1??(z,v)?(F,G)? ? u ? z = ? 1 J ? ( F , G ) ? ( u , z ) \frac{\partial u}{\partial z}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,z)} ?z?u?=?J1??(u,z)?(F,G)?
三個五元方程
F ( x , y , z , u , v ) = 0 F(x,y,z,u,v)=0 F(x,y,z,u,v)=0, G ( x , y , z , u , v ) = 0 G(x,y,z,u,v)=0 G(x,y,z,u,v)=0, H ( x , y , z , u , v ) = 0 H(x,y,z,u,v)=0 H(x,y,z,u,v)=0
推出隱函數(shù)形式 z = z ( x , y ) , u = u ( x , y ) , v = v ( x , y ) z=z(x,y), u=u(x,y), v=v(x,y) z=z(x,y),u=u(x,y),v=v(x,y)
0 = ? F ? x + ? F ? z ? z ? x + ? F ? u ? u ? x + ? F ? v ? v ? x 0= \frac{\partial F}{\partial x} +\frac{\partial F}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial F}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial x} 0=?x?F?+?z?F??x?z?+?u?F??x?u?+?v?F??x?v?
0 = ? G ? x + ? G ? z ? z ? x + ? G ? u ? u ? x + ? G ? v ? v ? x 0= \frac{\partial G}{\partial x} +\frac{\partial G}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial G}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial G}{\partial v}\frac{\partial v}{\partial x} 0=?x?G?+?z?G??x?z?+?u?G??x?u?+?v?G??x?v?
0 = ? H ? x + ? H ? z ? z ? x + ? H ? u ? u ? x + ? H ? v ? v ? x 0= \frac{\partial H}{\partial x} +\frac{\partial H}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial H}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial H}{\partial v}\frac{\partial v}{\partial x} 0=?x?H?+?z?H??x?z?+?u?H??x?u?+?v?H??x?v?
由克拉姆法則 J = ? ( F , G , H ) ? ( z , u , v ) J=\frac{\partial(F,G,H)}{\partial (z,u,v)} J=?(z,u,v)?(F,G,H)?,
? z ? x = ? 1 J ? ( F , G , H ) ? ( x , u , v ) \frac{\partial z}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(x,u,v)} ?x?z?=?J1??(x,u,v)?(F,G,H)? ? u ? x = ? 1 J ? ( F , G , H ) ? ( z , x , v ) \frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,x,v)} ?x?u?=?J1??(z,x,v)?(F,G,H)? ? v ? x = ? 1 J ? ( F , G , H ) ? ( z , u , x ) \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,u,x)} ?x?v?=?J1??(z,u,x)?(F,G,H)?
類似的 ? z ? y = ? 1 J ? ( F , G , H ) ? ( y , u , v ) \frac{\partial z}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(y,u,v)} ?y?z?=?J1??(y,u,v)?(F,G,H)? ? u ? y = ? 1 J ? ( F , G , H ) ? ( z , y , v ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,y,v)} ?y?u?=?J1??(z,y,v)?(F,G,H)? ? v ? y = ? 1 J ? ( F , G , H ) ? ( z , u , y ) \frac{\partial v}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,u,y)} ?y?v?=?J1??(z,u,y)?(F,G,H)?
(選看) 反函數(shù)的偏導數(shù)
一元一維函數(shù) y = f ( x ) y=f(x) y=f(x)
反函數(shù)為 x = f ? 1 ( y ) = ? ( y ) x=f^{-1}(y)=\phi(y) x=f?1(y)=?(y)
? ′ ( y ) = d x d y = 1 d y d x = 1 f ′ ( x ) = 1 f ′ ( ? ( y ) ) \phi'(y)=\frac{dx }{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{f'(x)}=\frac{1}{f'(\phi(y))} ?′(y)=dydx?=dxdy?1?=f′(x)1?=f′(?(y))1?
二元二維函數(shù) u ( x , y ) , v ( x , y ) u(x,y), v(x,y) u(x,y),v(x,y)
若在 x 0 , y 0 x_0,y_0 x0?,y0? 處滿足 雅可比行列式 ? ( u , v ) ? ( x , y ) ≠ 0 \frac{\partial (u,v)}{\partial (x,y)}\neq 0 ?(x,y)?(u,v)?=0, 則存在反函數(shù) x = x ( u , v ) , y = y ( u , v ) x=x(u,v), y=y(u,v) x=x(u,v),y=y(u,v),
反函數(shù)的雅可比矩陣是原函數(shù)雅可比矩陣的逆
令
F ( x , y , u , v ) = x ? x ( u ( x , y ) , v ( x , y ) ) = 0 F(x,y,u,v)=x-x(u(x,y),v(x,y))=0 F(x,y,u,v)=x?x(u(x,y),v(x,y))=0
G ( x , y , u , v ) = y ? y ( u ( x , y ) , v ( x , y ) ) = 0 G(x,y,u,v)=y-y(u(x,y),v(x,y))=0 G(x,y,u,v)=y?y(u(x,y),v(x,y))=0
對 F = 0 F=0 F=0 G = 0 G=0 G=0 同時對 x x x 求偏導
1 = ? x ? u ? u ? x + ? x ? v ? v ? x 1= \frac{\partial x}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial x}{\partial v}\frac{\partial v}{\partial x} 1=?u?x??x?u?+?v?x??x?v?
0 = ? y ? u ? u ? x + ? y ? v ? v ? x 0= \frac{\partial y}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial y}{\partial v}\frac{\partial v}{\partial x} 0=?u?y??x?u?+?v?y??x?v?
對 F = 0 F=0 F=0 G = 0 G=0 G=0 同時對 y y y 求偏導
0 = ? x ? u ? u ? y + ? x ? v ? v ? y 0= \frac{\partial x}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial x}{\partial v}\frac{\partial v}{\partial y} 0=?u?x??y?u?+?v?x??y?v?
1 = ? y ? u ? u ? y + ? y ? v ? v ? y 1= \frac{\partial y}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial y}{\partial v}\frac{\partial v}{\partial y} 1=?u?y??y?u?+?v?y??y?v?
J = ? ( x , y ) ? ( u , v ) J=\frac{\partial (x,y)}{\partial (u,v)} J=?(u,v)?(x,y)?
因此
? u ? x = 1 J ? y ? v \frac{\partial u}{\partial x}=\frac{1}{J}\frac{\partial y}{\partial v} ?x?u?=J1??v?y?
? v ? x = ? 1 J ? y ? u \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial y}{\partial u} ?x?v?=?J1??u?y?
? u ? y = ? 1 J ? x ? v \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial x}{\partial v} ?y?u?=?J1??v?x?
? v ? y = 1 J ? x ? u \frac{\partial v}{\partial y}=\frac{1}{J}\frac{\partial x}{\partial u} ?y?v?=J1??u?x?
用線性代數(shù)矩陣的乘法表示
[ ? x ? u ? x ? v ? y ? u ? y ? v ] [ ? u ? x ? u ? y ? v ? x ? v ? y ] = [ 1 0 0 1 ] \left[\begin{matrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{matrix}\right]\left[\begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{matrix}\right] =\left[\begin{matrix} 1 & 0\\ 0& 1 \end{matrix}\right] [?u?x??u?y???v?x??v?y??][?x?u??x?v???y?u??y?v??]=[10?01?]
三元三維函數(shù) u = ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) u=(x,y,z), v(x,y,z), w(x,y,z) u=(x,y,z),v(x,y,z),w(x,y,z)
類似地
[ ? x ? u ? x ? v ? x ? w ? y ? u ? y ? v ? y ? w ? z ? u ? z ? v ? z ? w ] [ ? u ? x ? u ? y ? u ? z ? v ? x ? v ? y ? v ? z ? w ? x ? w ? y ? w ? z ] = [ 1 0 0 0 1 0 0 0 1 ] \left[\begin{matrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}\\ \end{matrix}\right]\left[\begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} &\frac{\partial u}{\partial z}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} &\frac{\partial v}{\partial z}\\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} &\frac{\partial w}{\partial z}\\ \end{matrix}\right] =\left[\begin{matrix} 1 & 0& 0\\ 0& 1 &0\\ 0& 0 &1 \end{matrix}\right] ??u?x??u?y??u?z???v?x??v?y??v?z???w?x??w?y??w?z?? ? ??x?u??x?v??x?w???y?u??y?v??y?w???z?u??z?v??z?w?? ?= ?100?010?001? ?
(選看) 參數(shù)方程的微分
二維單參數(shù)方程 (一元二維)
x = x ( t ) x=x(t) x=x(t), y = y ( t ) y=y(t) y=y(t),
d y d x = d y d t d x d t \frac{d y}{d x}= \frac{\frac{d y}{d t}}{\frac{dx}{dt}} dxdy?=dtdx?dtdy??
三維單參數(shù)方程 (一元三維)
x = x ( t ) x=x(t) x=x(t), y = y ( t ) y=y(t) y=y(t), z = z ( t ) z=z(t) z=z(t)
d y d x = d y d t d x d t \frac{d y}{d x}= \frac{\frac{d y}{d t}}{\frac{dx}{dt}} dxdy?=dtdx?dtdy??
d z d x = d z d t d x d t \frac{d z}{d x}= \frac{\frac{d z}{d t}}{\frac{dx}{dt}} dxdz?=dtdx?dtdz??
d z d y = d z d t d y d t \frac{d z}{d y}= \frac{\frac{d z}{d t}}{\frac{dy}{dt}} dydz?=dtdy?dtdz??
三維雙參數(shù)方程 (二元三維)
x = x ( s , t ) x=x(s,t) x=x(s,t), y = y ( s , t ) y=y(s,t) y=y(s,t), z = z ( s , t ) z=z(s,t) z=z(s,t), 求解 ? z ? x \frac{\partial z}{\partial x} ?x?z?, ? z ? y \frac{\partial z}{\partial y} ?y?z?
推出隱函數(shù) s = s ( x , y ) s=s(x,y) s=s(x,y), t = t ( x , y ) t=t(x,y) t=t(x,y)
z = z ( s , t ) = z ( s ( x , y ) , t ( x , y ) ) z=z(s,t)=z(s(x,y), t(x,y)) z=z(s,t)=z(s(x,y),t(x,y)),
? z ? x = ? z ? s ? s ? x + ? z ? t ? t ? x \frac{\partial z}{\partial x}= \frac{\partial z}{\partial s}\frac{\partial s}{\partial x}+ \frac{\partial z}{\partial t}\frac{\partial t}{\partial x} ?x?z?=?s?z??x?s?+?t?z??x?t?
? z ? y = ? z ? s ? s ? y + ? z ? t ? t ? y \frac{\partial z}{\partial y}= \frac{\partial z}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial z}{\partial t}\frac{\partial t}{\partial y} ?y?z?=?s?z??y?s?+?t?z??y?t?
結合二元二維反函數(shù)
記 J = ? ( x , y ) ? ( s , t ) J=\frac{\partial (x,y)}{\partial (s,t)} J=?(s,t)?(x,y)?
? s ? x = 1 J ? y ? t \frac{\partial s}{\partial x}=\frac{1}{J}\frac{\partial y}{\partial t} ?x?s?=J1??t?y?
? t ? x = ? 1 J ? y ? s \frac{\partial t}{\partial x}=-\frac{1}{J}\frac{\partial y}{\partial s} ?x?t?=?J1??s?y?
? s ? y = ? 1 J ? x ? t \frac{\partial s}{\partial y}=-\frac{1}{J}\frac{\partial x}{\partial t} ?y?s?=?J1??t?x?
? t ? y = 1 J ? x ? s \frac{\partial t}{\partial y}=\frac{1}{J}\frac{\partial x}{\partial s} ?y?t?=J1??s?x?
? z ? x = 1 J ? ( z , x ) ? ( s , t ) \frac{\partial z}{\partial x} = \frac{1}{J} \frac{\partial (z,x)}{\partial (s,t)} ?x?z?=J1??(s,t)?(z,x)?
? z ? y = 1 J ? ( x , z ) ? ( s , t ) \frac{\partial z}{\partial y} = \frac{1}{J} \frac{\partial (x,z)}{\partial (s,t)} ?y?z?=J1??(s,t)?(x,z)?