做網(wǎng)站視頻圖片加載不出來(lái)企業(yè)網(wǎng)站模板下載
?💥💥💞💞歡迎來(lái)到本博客????💥💥
🏆博主優(yōu)勢(shì):🌞🌞🌞博客內(nèi)容盡量做到思維縝密,邏輯清晰,為了方便讀者。
??座右銘:行百里者,半于九十。
📋📋📋本文目錄如下:🎁🎁🎁
目錄
💥1 概述
📚2 運(yùn)行結(jié)果
🎉3?參考文獻(xiàn)
🌈4 Matlab代碼實(shí)現(xiàn)
💥1 概述
實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù)是將實(shí)數(shù)信號(hào)分解為一系列正弦和余弦函數(shù)的和。通過(guò)研究實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù),我們可以揭示信號(hào)的頻域特性、諧波成分以及信號(hào)的周期性等信息。
以下是實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù)研究的步驟:
1. 確定信號(hào)的周期:實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù)要求信號(hào)是周期性的,因此第一步是確定信號(hào)的周期。如果信號(hào)已知周期,則直接使用已知的周期;如果信號(hào)的周期未知,可以通過(guò)觀察信號(hào)的重復(fù)性或通過(guò)分析信號(hào)的特征來(lái)估計(jì)周期。
2. 計(jì)算基頻和諧波頻率:基頻是指信號(hào)的周期的倒數(shù),而諧波頻率是基頻的整數(shù)倍。通過(guò)計(jì)算基頻和諧波頻率,可以確定傅里葉級(jí)數(shù)中需要考慮的頻率分量。
3. 計(jì)算信號(hào)的系數(shù):使用傅里葉級(jí)數(shù)的公式,根據(jù)信號(hào)的周期和所選的頻率分量,計(jì)算信號(hào)在每個(gè)頻率分量上的系數(shù)。系數(shù)表示了每個(gè)頻率分量對(duì)于信號(hào)的貢獻(xiàn)程度。
4. 重構(gòu)信號(hào):將計(jì)算得到的正弦和余弦函數(shù)按照其對(duì)應(yīng)的系數(shù)加權(quán)求和,可以重構(gòu)出原始信號(hào)的近似,即使用傅里葉級(jí)數(shù)近似表示原始信號(hào)。
5. 分析頻域特性和諧波成分:通過(guò)觀察每個(gè)頻率分量的系數(shù),可以了解信號(hào)在頻域上的特性。特別是諧波成分在系數(shù)中的存在可以揭示信號(hào)中的諧波結(jié)構(gòu)和頻率分布情況。
6. 評(píng)估和調(diào)整:根據(jù)計(jì)算得到的傅里葉級(jí)數(shù)近似信號(hào)和頻域分析結(jié)果,評(píng)估傅里葉級(jí)數(shù)的逼近效果,并進(jìn)行必要的調(diào)整和優(yōu)化。
需要注意的是,實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù)研究需要信號(hào)是周期性的。對(duì)于非周期信號(hào),可以考慮使用傅里葉變換進(jìn)行頻域分析。
總之,實(shí)數(shù)信號(hào)的傅里葉級(jí)數(shù)研究包括確定信號(hào)的周期、計(jì)算基頻和諧波頻率、計(jì)算信號(hào)的系數(shù)、重構(gòu)信號(hào)、分析頻域特性和諧波成分等步驟。通過(guò)這些步驟,我們可以深入了解信號(hào)的頻域特性和諧波成分,從而更好地理解和處理實(shí)數(shù)信號(hào)。
📚2 運(yùn)行結(jié)果
?
部分代碼:
function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% Fourier series of real signals.
% Written by Yoash Levron, January 2013.
%
% This function computes the fourier series of a signal x(t).
% the amplitudes of the fourier series have the same dimension
% of the original signal, so this function is useful for immediate
% computation of the actual frequency components, without
% further processing.
%
% for example, x(t) = 2 + 3*cos(2*pi*50*t) will result in?
% dc value = 2
% frequencies = [50 ? 100 ?150 ? 200 ...]
% amplitudes ? = [3 ? ? 0 ? ? ?0 ? ? ? ?0 ? ? ...]
% phases ? ? ? ? = [0 ? ? 0 ? ? ?0 ? ? ? ?0 ? ? ...]
%
% x(t) is one cycle of an infinite cyclic signal. The function
% computes the fourier transform of that infinite signal.
% the period of the signal (T) is determined by the length
% of the input time vector, t.
% x(t) must be real (no imaginary values).
%
% The signal x(t) is represented as:
% x(t) = Adc + A1*cos(w*t + ph1) + A2*cos(2*w*t + ph2) + ...
% the function computes the amplitudes, Adc,A1,A2...
% and the phases ph1,ph2,...
%
% T = period of the signal = t(end) - t(1)
% w = basic frequency = 2*pi/T
%
% The function automatically interpolates the original signal
% to avoid aliasing. Likewise, the function automatically determines
% the number of fourier components, and truncates trailing zeros.
%
% inputs:
% t - [sec] time vector. Sample time may vary within the signal.
% x - signal vector. same length as t.
%
% outputs:
% freq - [Hz] frequencies of the fourier series, not including zero.
% amp - amplitudes vector. amp=[A1 A2 A3 ...], not including the DC component.
% phase - [rad/sec] . phases, not including the DC component.
% dc - the DC value (average of the signal).
%%%%%%%%%%% computation %%%%%%%%
rel_tol = 1e-4; ?% relative tolerance, to determine trailing zero truncation
if (~isreal(x))
? ? ? ? clc;
? ? ? ? beep;
? ? ? ? disp('fourier_series_real Error: ?x(t) must be real.');
? ? ? ? dc = NaN; ?amp = NaN; ?freq = NaN; ?phase = NaN;
? ? ? ? return;
end
t = t-t(1); ?% shifting time to zero.
T = t(end); ?% period time.
N = 100; ?% number of samples
if (mod(N,2) == 1)
? ? N = N + 1;
end
N = N/2;
ok = 0;
while (~ok)
? ? N = N*2; ?% increase number of samples
? ??
? ? if (N > 10e6)
? ? ? ? clc;
? ? ? ? beep;
? ? ? ? disp('fourier_series_real Error: signal bandwidth seems too high.');
? ? ? ? disp('Try decreasing the sample time in the input time vector t,');
? ? ? ? disp('or increasing the relative tolerance rel_tol');
? ? ? ? dc = NaN; ?amp = NaN; ?freq = NaN; ?phase = NaN;
? ? ? ? return;
? ? end
? ? dt = T/N;
? ? t1 = 0:dt:(T-dt);
? ? x1 = interp1(t,x,t1,'cubic',0);
? ? xk = (1/N)*fft(x1);
? ??
? ? dc = abs(xk(1));
? ? xkpos = xk(2:(N/2));
? ? xkneg = xk(end:-1:(N/2+2));
? ??
? ? freq = [1:length(xkpos)]/T; ?% Hz
? ? amp = 2*abs(xkpos);
? ? phase = angle(xkpos); ?% rad/sec
? ??
? ? %%% check if enough samples are used.
? ? %%% if not, try again, with more samples.
? ? Am = max(amp);
? ? ii = find((amp(end-10:end)/Am)>rel_tol);
? ? ok = isempty(ii);
end
% %%% truncate output vectors to remove trailing zeros
Am = max(amp);
ii = length(amp);
while (amp(ii) < Am*rel_tol)
? ? ii = ii - 1;
end
amp = amp(1:ii);
freq = freq(1:ii);
phase = phase(1:ii);
end
🎉3?參考文獻(xiàn)
部分理論來(lái)源于網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系刪除。
[1]趙樂(lè)源,劉傳輝,劉錫國(guó)等.基于傅里葉級(jí)數(shù)的橢圓球面波信號(hào)時(shí)頻分析[J].現(xiàn)代電子技術(shù),2022,45(17):35-40.DOI:10.16652/j.issn.1004-373x.2022.17.007.
[2]苗永平,代坤,陳達(dá)等.傅里葉級(jí)數(shù)實(shí)驗(yàn)的優(yōu)化設(shè)計(jì)與實(shí)踐[J].實(shí)驗(yàn)室科學(xué),2021,24(06):1-4+9.