樂清手機網(wǎng)站朋友圈廣告投放價格表
文章目錄
- 前言
- 一、Hermite插值
- 1.兩點三次Hermite插值
- 2.兩點三次Hermite插值的推廣
- 3.非標準型Hermite插值
- 二、三次樣條插值
- 1.概念
- 2.三彎矩方程
前言
之前寫過Lagrange插值與Newton插值法的內(nèi)容,這里介紹一些其他的插值方法,順便復習數(shù)值分析.
一、Hermite插值
實際應用中,為了使插值函數(shù)更好地切合原函數(shù),不僅要求節(jié)點的函數(shù)值相等,還要求導數(shù)值相同,甚至高階導數(shù)也相等,這類插值問題稱為Hermite插值
1.兩點三次Hermite插值
給定y=f(x)在節(jié)點x0,x1上的函數(shù)值和導數(shù)值:
y j = f ( x j ) , m j = f ′ ( x j ) , j = 0 , 1. y_j=f(x_j),m_j=f'(x_j),j=0,1. yj?=f(xj?),mj?=f′(xj?),j=0,1.
求多項式 H 3 ( x ) H_3(x) H3?(x)滿足插值條件
H 3 ( x j ) = y j , H 3 ′ ( x j ) = m j , j = 0 , 1. H_3(x_j)=y_j,H'_3(x_j)=m_j,j=0,1. H3?(xj?)=yj?,H3′?(xj?)=mj?,j=0,1.
類似Lagrange插值多項式,我們可以設
H 3 ( x ) = y 0 α 0 ( x ) + y 1 α 1 ( x ) + m 0 β 0 ( x ) + m 1 β 1 ( x ) H_3(x)=y_0\alpha_0(x)+y_1\alpha_1(x)+m_0\beta_0(x)+m_1\beta_1(x) H3?(x)=y0?α0?(x)+y1?α1?(x)+m0?β0?(x)+m1?β1?(x)
為三次Hermite插值多項式,其中 α 0 ( x ) , α 1 ( x ) , β 0 ( x ) , β 1 ( x ) \alpha_0(x),\alpha_1(x),\beta_0(x),\beta_1(x) α0?(x),α1?(x),β0?(x),β1?(x)稱為Hermite插值基函數(shù).
基函數(shù)滿足如下條件:
α j ( x j ) = δ j i , α j ′ ( x i ) = 0 , β j ( x i ) = 0 , β j ′ ( x i ) = δ j i , i , j = 0 , 1 \alpha_j(x_j)=\delta_{ji},\alpha'_j(x_i)=0,\\\beta_j(x_i)=0,\beta'_j(x_i)=\delta_{ji},\\ i,j=0,1 αj?(xj?)=δji?,αj′?(xi?)=0,βj?(xi?)=0,βj′?(xi?)=δji?,i,j=0,1
其中 δ j i = { 1 j = i 0 j ≠ i \delta_{ji}=\begin{cases}1&j=i\\ 0&j\neq i \end{cases} δji?={10?j=ij=i?
我們可以找到唯一的三次Hermite插值多項式(推導略),即
H 3 ( x ) = y 0 [ 1 + 2 l 1 ( x ) ] l 0 2 ( x ) + y 1 [ 1 + 2 l 0 ( x ) ] l 1 2 ( x ) + m 0 ( x ? x 0 ) l 0 2 ( x ) + m 1 ( x ? x 1 ) l 1 2 ( x ) H_3(x)=y_0[1+2l_1(x)]l^2_0(x)+y_1[1+2l_0(x)]l^2_1(x)\\+m_0(x-x_0)l^2_0(x)+m_1(x-x_1)l^2_1(x) H3?(x)=y0?[1+2l1?(x)]l02?(x)+y1?[1+2l0?(x)]l12?(x)+m0?(x?x0?)l02?(x)+m1?(x?x1?)l12?(x)
這里的 l i l_i li?為Lagrange插值基函數(shù), l 0 ( x ) = x ? x 1 x 0 ? x 1 , l 1 ( x ) = x ? x 0 x 1 ? x 0 l_0(x)=\frac{x-x_1}{x_0-x_1},l_1(x)=\frac{x-x_0}{x_1-x_0} l0?(x)=x0??x1?x?x1??,l1?(x)=x1??x0?x?x0??
2.兩點三次Hermite插值的推廣
設 x i ∈ [ a , b ] ( i = 0 , 1 , ? , n ) x_i\in[a,b](i=0,1,\cdots,n) xi?∈[a,b](i=0,1,?,n)為n+1個互異節(jié)點,給定 y = f ( x ) y=f(x) y=f(x)在節(jié)點上的函數(shù)值和導數(shù)值: y j = f ( x j ) , m j = f ′ ( x j ) , j = 0 , ? , n . y_j=f(x_j),m_j=f'(x_j),j=0,\cdots,n. yj?=f(xj?),mj?=f′(xj?),j=0,?,n.要求插值多項式 H 2 n + 1 ( x ) H_{2n+1}(x) H2n+1?(x)滿足插值條件
H 2 n + 1 ( x j ) = y j , H 2 n + 1 ′ ( x j ) = m j , j = 0 , ? , n . H_{2n+1}(x_j)=y_j,H'_{2n+1}(x_j)=m_j,j=0,\cdots,n. H2n+1?(xj?)=yj?,H2n+1′?(xj?)=mj?,j=0,?,n.有n+1個函數(shù)值和n+1個導數(shù)值共2n+2個條件,可確定滿足插值條件次數(shù)不超過2n+1次的多項式 H 2 n + 1 ( x ) H_{2n+1}(x) H2n+1?(x).
公式:
H 2 n + 1 = ∑ j = 0 n { f ( x j ) [ 1 ? 2 ( x ? x j ) l j ′ ( x j ) ] l j 2 ( x ) + f ′ ( x j ) ( x ? x j ) l j 2 ( x ) } H_{2n+1}=\sum_{j=0}^n \{f(x_j)[1-2(x-x_j)l'_j(x_j)]l^2_j(x)+f'(x_j)(x-x_j)l^2_j(x)\} H2n+1?=j=0∑n?{f(xj?)[1?2(x?xj?)lj′?(xj?)]lj2?(x)+f′(xj?)(x?xj?)lj2?(x)}
其中 l j ( x ) = ( x ? x 0 ) ? ( x ? x j ? 1 ) ( x ? x j + 1 ) ? ( x ? x n ) ( x j ? x 0 ) ? ( x j ? x j ? 1 ) ( x j ? x j + 1 ) ? ( x j ? x n ) l_j(x)=\frac{(x-x_0)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_n)}{(x_j-x_0)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_n)} lj?(x)=(xj??x0?)?(xj??xj?1?)(xj??xj+1?)?(xj??xn?)(x?x0?)?(x?xj?1?)(x?xj+1?)?(x?xn?)?
3.非標準型Hermite插值
給出的函數(shù)值和導數(shù)值不等的情況,例題:
二、三次樣條插值
Hermite只保證函數(shù)連續(xù)或其一階導數(shù)連續(xù),滿足不了二階導數(shù)連續(xù)的問題. 針對這一問題,產(chǎn)生了樣條插值.
1.概念
給定區(qū)間[a,b]一個劃分:
a = x 0 < x 1 ? < x n ? 1 < x n = b a=x_0<x_1\cdots <x_{n-1}<x_n=b a=x0?<x1??<xn?1?<xn?=b
若函數(shù)S(x)滿足
- 在每個小區(qū)間 [ x i , x i + 1 ] [x_i,x_{i+1}] [xi?,xi+1?]是分段三次多項式
- 具有二階連續(xù)導數(shù),即 S ( x ) ∈ C 2 [ a , b ] S(x)\in C^2[a,b] S(x)∈C2[a,b]
- 還滿足插值條件: S ( x i ) = f ( x i ) = y i , i = 0 , 1 , 2 , ? , n S(x_i)=f(x_i)=y_i,i=0,1,2,\cdots,n S(xi?)=f(xi?)=yi?,i=0,1,2,?,n
則稱S(x)為f(x)在[a,b]上的三次樣條插值函數(shù),
S ( x ) = { s 0 ( x ) , x ∈ [ x 0 , x 1 ] , s 1 ( x ) , x ∈ [ x 1 , x 2 ] , ? s n ? 1 ( x ) , x ∈ [ x n ? 1 , x n ] , S(x)=\begin{cases}s_0(x),&x\in [x_0,x_1],\\ s_1(x),&x\in [x_1,x_2],\\ \vdots\\s_{n-1}(x),&x\in [x_{n-1},x_n],\end{cases} S(x)=? ? ??s0?(x),s1?(x),?sn?1?(x),?x∈[x0?,x1?],x∈[x1?,x2?],x∈[xn?1?,xn?],?
其中, s i ( x ) s_i(x) si?(x)為 [ x i , x i + 1 ] ( i = 0 , 1 , 2 , ? , n ? 1 ) [x_i,x_{i+1}](i=0,1,2,\cdots,n-1) [xi?,xi+1?](i=0,1,2,?,n?1)上的三次多項式,設
s i ( x ) = a i x 3 + b i x 2 + c i x + d i ( i = 0 , 1 , ? , n ? 1 ) , s_i(x)=a_ix^3+b_ix^2+c_ix+d_i(i=0,1,\cdots,n-1), si?(x)=ai?x3+bi?x2+ci?x+di?(i=0,1,?,n?1),
且滿足 s i ( x i ) = y i , s i + 1 ( x i + 1 ) s_i(x_i)=y_i,s_{i+1}(x_{i+1}) si?(xi?)=yi?,si+1?(xi+1?). 由三次樣條函數(shù)的定義可知, S ( x ) S(x) S(x)滿足下列條件:
{ S ( x i ? 0 ) = S ( x i + 0 ) ( i = 1 , 2 , ? , n ? 1 ) , S ′ ( x i ? 0 ) = S ′ ( x i + 0 ) ( i = 1 , 2 , ? , n ? 1 ) , S ′ ′ ( x i ? 0 ) = S ′ ′ ( x i + 0 ) ( i = 1 , 2 , ? , n ? 1 ) , S ( x i ) = y i ( i = 0 , 1 , 2 , ? , n ) \begin{cases}S(x_i-0)=S(x_i+0)&(i=1,2,\cdots,n-1),\\ S'(x_i-0)=S'(x_i+0)&(i=1,2,\cdots,n-1),\\ S''(x_i-0)=S''(x_i+0)&(i=1,2,\cdots,n-1),\\ S(x_i)=y_i&(i=0,1,2,\cdots,n) \end{cases} ? ? ??S(xi??0)=S(xi?+0)S′(xi??0)=S′(xi?+0)S′′(xi??0)=S′′(xi?+0)S(xi?)=yi??(i=1,2,?,n?1),(i=1,2,?,n?1),(i=1,2,?,n?1),(i=0,1,2,?,n)?
每個 s i ( x ) s_i(x) si?(x)有4個待定系數(shù),所以S(x)共有4n個待定系數(shù),故需4n個方程才能確定. 前面已經(jīng)得到2n+2(n-1)=4n-2個方程,還缺2個方程. 實際問題通常對樣條函數(shù)在兩個端點處的狀態(tài)有要求,即所謂的邊界條件. 常用的邊界條件如下:
第一類邊界條件:給定函數(shù)在端點處的一階導數(shù),即
S ′ ( x 0 ) = f 0 ′ , S ′ ( x n ) = f n ′ S'(x_0)=f_0',S'(x_n)=f'_n S′(x0?)=f0′?,S′(xn?)=fn′?
第二類邊界條件:給定函數(shù)在端點處的二階導數(shù),即
S ′ ′ ( x 0 ) = f 0 ′ ′ , S ′ ′ ( x n ) = f n ′ ′ S''(x_0)=f''_0,S''(x_n)=f_n'' S′′(x0?)=f0′′?,S′′(xn?)=fn′′?
第三類邊界條件:設 f ( x ) f(x) f(x)是周期函數(shù),并設 x n ? x 0 x_n-x_0 xn??x0?是一個周期,于是要求 S ( x ) S(x) S(x)滿足
S ′ ( x 0 ) = S ′ ( x n ) , S ′ ′ ( x 0 ) = S ′ ′ ( x n ) S'(x_0)=S'(x_n),S''(x_0)=S''(x_n) S′(x0?)=S′(xn?),S′′(x0?)=S′′(xn?)
2.三彎矩方程
設 S ′ ′ ( x j ) = M j , j = 0 , 1 , 2 , ? , n S''(x_j)=M_j,j=0,1,2,\cdots,n S′′(xj?)=Mj?,j=0,1,2,?,n,下面計算 S ( x ) S(x) S(x)在 [ x j , x j + 1 ] [x_j,x_{j+1}] [xj?,xj+1?]的表達式 s j ( x ) s_j(x) sj?(x).由于 s j ( x ) s_j(x) sj?(x)是三次多項式,故 s j ′ ′ ( x ) s''_j(x) sj′′?(x)為線性函數(shù),且 s j ′ ′ ( x j ) = M j , s j ′ ′ ( x j + 1 ) = M j + 1 s_j''(x_j)=M_j,s''_j(x_{j+1})=M_{j+1} sj′′?(xj?)=Mj?,sj′′?(xj+1?)=Mj+1?.由線性插值公式可得
s j ′ ′ ( x ) = x j + 1 ? x h j M j + x ? x j h j M j + 1 s''_j(x)=\frac{x_{j+1}-x}{h_j}M_j+\frac{x-x_j}{h_j}M_{j+1} sj′′?(x)=hj?xj+1??x?Mj?+hj?x?xj??Mj+1?
其中 h j = x j + 1 ? x j h_j=x_{j+1}-x_j hj?=xj+1??xj?,求積分,可得
s j ( x ) = ( x j + 1 ? x ) 3 6 h j M j + ( x ? x j ) 3 6 h j M j + 1 + c 1 x + c 2 s_j(x)=\frac{(x_{j+1}-x)^3}{6h_j}M_j+\frac{(x-x_j)^3}{6h_j}M_{j+1}+c_1x+c_2 sj?(x)=6hj?(xj+1??x)3?Mj?+6hj?(x?xj?)3?Mj+1?+c1?x+c2?
將插值條件 s j ( x j ) = y j , s j ( x j + 1 ) = y i + 1 s_j(x_j)=y_j,s_j(x_{j+1})=y_{i+1} sj?(xj?)=yj?,sj?(xj+1?)=yi+1?代入,即課確定積分常數(shù) c 1 c_1 c1?和 c 2 c_2 c2?. 整理后可得 s j ( x ) s_j(x) sj?(x)的表達式為 s j ( x ) = ( x j + 1 ? x ) 2 6 h j M j + ( x ? x j ) 3 6 h j M j + 1 + ( y j ? M j h j 2 6 ) x j + 1 ? x h j + ( y i + 1 ? M j + 1 h j 2 6 ) x ? x j h j , j = 0 , 1 , ? , n ? 1 s_j(x)=\frac{(x_{j+1}-x)^2}{6h_j}M_j+\frac{(x-x_j)^3}{6h_j}M_{j+1}\\ +\left(y_j-\frac{M_jh_j^2}{6}\right)\frac{x_{j+1}-x}{h_j}+\left(y_{i+1}-\frac{M_{j+1}h_j^2}{6}\right)\frac{x-x_j}{h_j},j=0,1,\cdots,n-1 sj?(x)=6hj?(xj+1??x)2?Mj?+6hj?(x?xj?)3?Mj+1?+(yj??6Mj?hj2??)hj?xj+1??x?+(yi+1??6Mj+1?hj2??)hj?x?xj??,j=0,1,?,n?1
只需確定 M 0 , M 1 , ? , M n M_0,M_1,\cdots,M_n M0?,M1?,?,Mn?的值,即可給出 s j ( x ) s_j(x) sj?(x)的表達式,從而可以得到 S ( x ) S(x) S(x)的表達式
s j ′ ( x ) = ? ( x j + 1 ? x ) 2 2 h j M j + ( x ? x j ) 2 2 h j M j + 1 + y j + 1 ? y j h j ? h j 6 ( M j + 1 ? M j ) s'_j(x)=-\frac{(x_{j+1}-x)^2}{2h_j}M_j+\frac{(x-x_j)^2}{2h_j}M_{j+1}+\frac{y_{j+1}-y_j}{h_j}-\frac{h_j}{6}(M_{j+1}-M_j) sj′?(x)=?2hj?(xj+1??x)2?Mj?+2hj?(x?xj?)2?Mj+1?+hj?yj+1??yj???6hj??(Mj+1??Mj?)
根據(jù)條件 s j ? 1 ′ ( x j ? 0 ) = s j ′ ( x j + 0 ) s_{j-1}'(x_j-0)=s_j'(x_j+0) sj?1′?(xj??0)=sj′?(xj?+0)可知
h j ? 1 6 M j ? 1 + h j ? 1 + h j 3 M j + h j 6 M j + 1 = y j + 1 ? y j h j ? y j ? y j ? 1 h j ? 1 , h j ? 1 h j ? 1 + h j M j ? 1 + 2 M j + h j h j ? 1 + h j M j + 1 = 6 f [ x j , x j + 1 ] ? f [ x j ? 1 , x j ] h j ? 1 + h j , \frac{h_{j-1}}{6}M_{j-1}+\frac{h_{j-1}+h_j}{3}M_j+\frac{h_j}{6}M_{j+1}=\frac{y_{j+1}-y_j}{h_j}-\frac{y_j-y_{j-1}}{h_{j-1}},\\ \frac{h_{j-1}}{h_{j-1}+h_j}M_{j-1}+2M_j+\frac{h_j}{h_{j-1}+h_j}M_{j+1}=6\frac{f[x_j,x_{j+1}]-f[x_{j-1},x_j]}{h_{j-1}+h_j}, 6hj?1??Mj?1?+3hj?1?+hj??Mj?+6hj??Mj+1?=hj?yj+1??yj???hj?1?yj??yj?1??,hj?1?+hj?hj?1??Mj?1?+2Mj?+hj?1?+hj?hj??Mj+1?=6hj?1?+hj?f[xj?,xj+1?]?f[xj?1?,xj?]?,
整理后得到關于 M j ? 1 , M j , M j + 1 M_{j-1},M_j,M_{j+1} Mj?1?,Mj?,Mj+1?的方程:
μ j M j ? 1 + 2 M j + λ j M j + 1 = d j , \mu_jM_{j-1}+2M_j+\lambda_jM_{j+1}=d_j, μj?Mj?1?+2Mj?+λj?Mj+1?=dj?,
其中 μ j = h j ? 1 h j ? 1 + h j , λ j = h j h j ? 1 + h j d j = 6 f [ x j ? 1 , x j , x j + 1 ] , μ j + λ j = 1 j = 1 , 2 , ? , n ? 1 \mu_j=\frac{h_{j-1}}{h_{j-1}+h_j},\lambda_j=\frac{h_j}{h_{j-1}+h_j}\\ d_j=6f[x_{j-1},x_j,x_{j+1}],\mu_j+\lambda_j=1\\ j=1,2,\cdots,n-1 μj?=hj?1?+hj?hj?1??,λj?=hj?1?+hj?hj??dj?=6f[xj?1?,xj?,xj+1?],μj?+λj?=1j=1,2,?,n?1
這里一共有n-1個方程,補充兩個方程后可確定 M 0 , M 1 , ? , M n M_0,M_1,\cdots,M_n M0?,M1?,?,Mn?共n-1個未知量.
- 第一類邊界條件: S ′ ( x 0 ) = f 0 ′ , S ′ ( x n ) = f n ′ S'(x_0)=f'_0,S'(x_n)=f_n' S′(x0?)=f0′?,S′(xn?)=fn′?
直接代入 s j ( x ) s_j(x) sj?(x)的一階導數(shù)表達式即得
2 M 0 + M 1 = 6 ( ( y 1 ? y 0 ) / h 0 ? f 0 ′ ) / h 0 ≡ d 0 , M n ? 1 + 2 M n = 6 ( f n ′ ? ( y n ? y n ? 1 ) / h n ? 1 ) / h n ? 1 ≡ d n . 2M_0+M_1=6((y_1-y_0)/h_0-f_0')/h_0\equiv d_0,\\ M_{n-1}+2M_n=6(f'_n-(y_n-y_{n-1})/h_{n-1})/h_{n-1}\equiv d_n. 2M0?+M1?=6((y1??y0?)/h0??f0′?)/h0?≡d0?,Mn?1?+2Mn?=6(fn′??(yn??yn?1?)/hn?1?)/hn?1?≡dn?.
與上面n-1個方程組聯(lián)立可得n+1階線性方程組
[ 2 1 μ 1 2 λ 1 μ 2 2 λ 2 ? ? ? μ n ? 1 2 λ n ? 1 1 2 ] [ M 0 M 1 M 2 ? M n ? 1 M n ] = [ d 0 d 1 d 2 ? d n ? 1 d n ] \begin{bmatrix}2&1&&&&&\\ \mu_1&2&\lambda_1\\ &\mu_2&2&\lambda_2\\ &&\ddots&\ddots&\ddots\\ &&&\mu_{n-1}&2&\lambda_{n-1}\\ &&&&1&2\end{bmatrix}\begin{bmatrix}M_0\\M_1\\M_2\\ \vdots \\M_{n-1}\\M_n\end{bmatrix}=\begin{bmatrix}d_0\\d_1\\d_2\\ \vdots \\d_{n-1}\\d_n\end{bmatrix} ?2μ1??12μ2??λ1?2??λ2??μn?1???21?λn?1?2? ? ?M0?M1?M2??Mn?1?Mn?? ?= ?d0?d1?d2??dn?1?dn?? ?
此方程組的系數(shù)矩陣嚴格對角占優(yōu),因此為非奇異矩陣,方程存在唯一解.可用追趕法求出三彎矩方程的解 M j . M_j. Mj?. - 第二類邊界條件: M 0 = f 0 ′ ′ , M n = f n ′ ′ M_0=f''_0,M_n=f_n'' M0?=f0′′?,Mn?=fn′′?
此時只需解n-1階線性方程組
[ 2 λ 1 μ 2 2 λ 2 ? ? ? μ n ? 2 2 λ n ? 2 μ n ? 1 2 ] [ M 1 M 2 ? M n ? 1 M n ] = [ d 1 ? μ 1 f 0 ′ ′ d 2 ? d n ? 2 d n ? 1 ? λ n ? 1 f n ′ ′ ] \begin{bmatrix}2&\lambda_1&&&\\ \mu_2&2&\lambda_2\\ &\ddots&\ddots&\ddots\\ &&\mu_{n-2}&2&\lambda_{n-2}\\ &&&\mu_{n-1}&2\end{bmatrix}\begin{bmatrix}M_1\\M_2\\ \vdots \\M_{n-1}\\M_n\end{bmatrix}=\begin{bmatrix}d_1-\mu_1f''_0\\d_2\\ \vdots \\d_{n-2}\\d_{n-1}-\lambda_{n-1}f''_n\end{bmatrix} ?2μ2??λ1?2??λ2??μn?2???2μn?1??λn?2?2? ? ?M1?M2??Mn?1?Mn?? ?= ?d1??μ1?f0′′?d2??dn?2?dn?1??λn?1?fn′′?? ?
此方程嚴格對角占優(yōu),存在唯一解. - 第三類邊界條件: S ′ ( x 0 ) = S ′ ( x n ) , S ′ ′ ( x 0 ) = S ′ ′ ( x n ) S'(x_0)=S'(x_n),S''(x_0)=S''(x_n) S′(x0?)=S′(xn?),S′′(x0?)=S′′(xn?)
由此邊界條件可得 M 0 = M n , λ n M 1 + μ n M n ? 1 + 2 M n = d n , M_0=M_n,\\ \lambda_nM_1+\mu_nM_{n-1}+2M_n=d_n, M0?=Mn?,λn?M1?+μn?Mn?1?+2Mn?=dn?,
其中 λ n = h 0 / ( h 0 + h n ? 1 ) , μ n = h n ? 1 / ( h 0 + h n ? 1 ) , d n = 6 [ ( y 1 ? y 0 ) / h 0 ? ( y n ? y n ? 1 ) / h n ? 1 ] / ( h 0 + h n ? 1 ) . \lambda_n=h_0/(h_0+h_{n-1}),\mu_n=h_{n-1}/(h_0+h_{n-1}),\\ d_n=6[(y_1-y_0)/h_0-(y_n-y_{n-1})/h_{n-1}]/(h_0+h_{n-1}). λn?=h0?/(h0?+hn?1?),μn?=hn?1?/(h0?+hn?1?),dn?=6[(y1??y0?)/h0??(yn??yn?1?)/hn?1?]/(h0?+hn?1?).
與前面n-1個方程聯(lián)立可得n階線性方程組:
[ 2 λ 1 μ 2 2 λ 2 ? ? ? μ n ? 2 2 λ n ? 2 λ n μ 2 2 ] [ M 1 M 2 ? M n ? 1 M n ] = [ d 0 d 1 d 2 ? d n ? 1 d n ] \begin{bmatrix}2&\lambda_1&&&\\ \mu_2&2&\lambda_2\\ &\ddots&\ddots&\ddots\\ &&\mu_{n-2}&2&\lambda_{n-2}\\ \lambda_n&&&\mu_2&2\end{bmatrix}\begin{bmatrix}M_1\\M_2\\ \vdots \\M_{n-1}\\M_n\end{bmatrix}=\begin{bmatrix}d_0\\d_1\\d_2\\ \vdots \\d_{n-1}\\d_n\end{bmatrix} ?2μ2?λn??λ1?2??λ2??μn?2???2μ2??λn?2?2? ? ?M1?M2??Mn?1?Mn?? ?= ?d0?d1?d2??dn?1?dn?? ?
此方程組系數(shù)矩陣嚴格對角占優(yōu),存在唯一解.
參考書目:《數(shù)值分析》張雪瑩