做招聘網(wǎng)站畢業(yè)設(shè)計(jì)二維碼推廣賺傭金平臺(tái)
Transformer-LSTM預(yù)測(cè) | Matlab實(shí)現(xiàn)Transformer-LSTM多變量時(shí)間序列預(yù)測(cè)
目錄
- Transformer-LSTM預(yù)測(cè) | Matlab實(shí)現(xiàn)Transformer-LSTM多變量時(shí)間序列預(yù)測(cè)
- 效果一覽
- 基本介紹
- 程序設(shè)計(jì)
- 參考資料
效果一覽
基本介紹
1.Matlab實(shí)現(xiàn)Transformer-LSTM多變量時(shí)間序列預(yù)測(cè),Transformer結(jié)合LSTM長短期記憶神經(jīng)網(wǎng)絡(luò)多變量時(shí)間序列預(yù)測(cè);
2.運(yùn)行環(huán)境為Matlab2023b及以上;
3.data為數(shù)據(jù)集,輸入多個(gè)特征,輸出單個(gè)變量,考慮歷史特征的影響,多變量時(shí)間序列預(yù)測(cè),main.m為主程序,運(yùn)行即可,所有文件放在一個(gè)文件夾;
4.命令窗口輸出R2、MSE、RMSE、MAE、MAPE、MBE等多指標(biāo)評(píng)價(jià);
程序設(shè)計(jì)
- 完整程序和數(shù)據(jù)下載私信博主回復(fù)Matlab實(shí)現(xiàn)Transformer-LSTM多變量時(shí)間序列預(yù)測(cè)。
%% 清空環(huán)境變量
warning off % 關(guān)閉報(bào)警信息
close all % 關(guān)閉開啟的圖窗
clear % 清空變量
clc % 清空命令行%% 導(dǎo)入數(shù)據(jù)
result = xlsread('data.xlsx');%% 數(shù)據(jù)分析
num_samples = length(result); % 樣本個(gè)數(shù)
or_dim = size(result, 2); % 原始特征+輸出數(shù)目
kim = 2; % 延時(shí)步長(kim個(gè)歷史數(shù)據(jù)作為自變量)
zim = 1; % 跨zim個(gè)時(shí)間點(diǎn)進(jìn)行預(yù)測(cè)%% 數(shù)據(jù)集分析
outdim = 1; % 最后一列為輸出
num_size = 0.7; % 訓(xùn)練集占數(shù)據(jù)集比例
num_train_s = round(num_size * num_samples); % 訓(xùn)練集樣本個(gè)數(shù)
f_ = size(res, 2) - outdim; % 輸入特征維度%% 劃分訓(xùn)練集和測(cè)試集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 數(shù)據(jù)歸一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 數(shù)據(jù)平鋪
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 數(shù)據(jù)格式轉(zhuǎn)換
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end
參考資料
[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502