制作網(wǎng)站需要學(xué)什么軟件有哪些廣州seo服務(wù)
0 插值介紹
插值法是廣泛應(yīng)用于理論研究和工程實際的重要數(shù)值方法。用提供的部分離散的函數(shù)值來進行理論分析和設(shè)計都是極不方便的,因此希望能夠用一個既能反映原函數(shù)特征,又便于計算的簡單函數(shù)去近似原函數(shù)。
1 低次拉格朗日插值
定理:設(shè) x 0 {x_0} x0?, ? {\cdots} ?, x n {x_n} xn?是互異插值節(jié)點,則滿足差值條件 p ( x i ) = y i ( i = 0 , 1 , 2 , ? , n ) {p(x_i)}=y_i(i=0,1,2,\cdots,n) p(xi?)=yi?(i=0,1,2,?,n)的插值多項式 p ( x ) = a 0 + a 1 x + a 2 x 2 + ? + a n x n {p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n} p(x)=a0?+a1?x+a2?x2+?+an?xn是存在且唯一的。
證明:由條件可知, p ( x ) p(x) p(x)的系數(shù) a i a_i ai?滿足
{ a 0 + a 1 x 0 + ? + a n x 0 = y 0 a 0 + a 1 x 1 + ? + a n x 1 = y 1 ? a 0 + a 1 x n + ? + a n x n = y n \left\{ \begin{array}{c} a_0+a_1x_0+\cdots+a_nx_0=y_0\\ a_0+a_1x_1+\cdots+a_nx_1=y_1\\ \vdots\\ a_0+a_1x_n+\cdots+a_nx_n=y_n\\ \end{array} \right. ? ? ??a0?+a1?x0?+?+an?x0?=y0?a0?+a1?x1?+?+an?x1?=y1??a0?+a1?xn?+?+an?xn?=yn??
這是一個關(guān)于 a 0 , a 1 , ? , a n a_0,a_1, \cdots ,a_n a0?,a1?,?,an?的 n + 1 n+1 n+1元線性方程組,并注意到其系數(shù)行列式為一個范德蒙行列式,又由于 i ≠ j i \ne j i=j時 x i ≠ x j x_i \ne x_j xi?=xj?,于是,方程組唯一解。
以上定理的證明提供了一個求 p ( x ) p(x) p(x)的方法,這就是解方程組。但當(dāng) n n n較大時,這是很困難的。對于給定的插值點,求形如 p ( x ) = a 0 + a 1 x + a 2 x 2 + ? + a n x n {p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n} p(x)=a0?+a1?x+a2?x2+?+an?xn的插值多項式有不同的方法。
1.1 n=1時插值方法
先討論 n = 1 n=1 n=1的簡單情況,互異插值點 x 0 , x 1 x_0,x_1 x0?,x1?上的函數(shù)值分別為 f ( x 0 ) , f ( x 1 ) f(x_0),f(x_1) f(x0?),f(x1?)是已知的,通過兩點 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0?,f(x0?))及 ( x 1 , f ( x 1 ) ) (x_1,f(x_1)) (x1?,f(x1?))的插值多項式是一條直線,即兩點式
L 1 ( x ) = x ? x 1 x 0 ? x 1 f ( x 0 ) + x ? x 0 x 1 ? x 0 f ( x 1 ) L_1(x)=\frac {x-x_1}{x_0-x_1}f(x_0) + \frac {x-x_0}{x_1-x_0}f(x_1) L1?(x)=x0??x1?x?x1??f(x0?)+x1??x0?x?x0??f(x1?)
顯然, L 1 ( x 0 ) = f ( x 0 ) , L 1 ( x 1 ) = f ( x 0 ) L_1(x_0)=f(x_0),L_1(x_1)=f(x_0) L1?(x0?)=f(x0?),L1?(x1?)=f(x0?),滿足插值條件,所以 L 1 ( x ) L_1(x) L1?(x)就是線性插值多項式。若記 l 0 ( x ) = x ? x 1 x 0 ? x 1 l_0(x)=\frac{x-x_1}{x_0-x_1} l0?(x)=x0??x1?x?x1??, l 1 ( x ) = x ? x 0 x 1 ? x 0 l_1(x)=\frac{x-x_0}{x_1-x_0} l1?(x)=x1??x0?x?x0??,則稱 l 0 ( x ) , l 1 ( x ) l_0(x),l_1(x) l0?(x),l1?(x)為關(guān)于 x 0 x_0 x0?與 x 1 x_1 x1?的線性插值基函數(shù)。
于是有
L 1 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) L_1(x)=l_0(x)f(x_0)+l_1(x)f(x_1) L1?(x)=l0?(x)f(x0?)+l1?(x)f(x1?)
1.2 n=2時插值方法
當(dāng) n = 2 n=2 n=2時,給定互異插值點 x 0 , x 1 , x 2 x_0,x_1,x_2 x0?,x1?,x2?上的函數(shù)值分別為
f ( x 0 ) , f ( x 1 ) , f ( x 2 ) f(x_0),f(x_1),f(x_2) f(x0?),f(x1?),f(x2?)
l 0 ( x ) = ( x ? x 1 ) ( x ? x 2 ) ( x 0 ? x 1 ) ( x 0 ? x 2 ) , l_0(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}, l0?(x)=(x0??x1?)(x0??x2?)(x?x1?)(x?x2?)?,
l 1 ( x ) = ( x ? x 0 ) ( x ? x 2 ) ( x 1 ? x 0 ) ( x 1 ? x 2 ) , l_1(x)=\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}, l1?(x)=(x1??x0?)(x1??x2?)(x?x0?)(x?x2?)?,
l 2 ( x ) = ( x ? x 0 ) ( x ? x 1 ) ( x 2 ? x 0 ) ( x 2 ? x 1 ) l_2(x)=\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} l2?(x)=(x2??x0?)(x2??x1?)(x?x0?)(x?x1?)?
稱為關(guān)于點 x 0 , x 1 , x 2 x_0,x_1,x_2 x0?,x1?,x2?的二次插值基函數(shù),它滿足
l i ( x j ) = { 1 , j = i 0 , j ≠ i , i , j = 0 , 1 , 2 , ? l_i(x_j)= \left\{ \begin{array}{c} 1, j = i \\ 0, j \ne i\\ \end{array},i,j=0,1,2,\cdots \right. li?(xj?)={1,j=i0,j=i?,i,j=0,1,2,?
滿足條件的 L 2 ( x i ) = f ( x i ) ( i = 0 , 1 , 2 ) L_2(x_i)=f(x_i)(i=0,1,2) L2?(xi?)=f(xi?)(i=0,1,2)的二次插值多項式 L 2 ( x ) L_2(x) L2?(x)可表示為
L 2 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) + l 2 ( x ) f ( x 2 ) L_2(x)=l_0(x)f(x_0)+l_1(x)f(x_1)+l_2(x)f(x_2) L2?(x)=l0?(x)f(x0?)+l1?(x)f(x1?)+l2?(x)f(x2?)
y = L 2 ( x ) y=L_2(x) y=L2?(x)的圖形是通過三點 ( x 1 , f ( x i ) ) ( i = 0 , 1 , 2 ) (x_1,f(x_i))(i=0,1,2) (x1?,f(xi?))(i=0,1,2)的拋物線。
1.3 舉例
x x x | 1 | 4 | 9 | 16 |
---|---|---|---|---|
x \sqrt{x} x? | 1 | 2 | 3 | 4 |
解:
選擇與 x = 5 x=5 x=5最接近的三點 x 0 = 1 , x 1 = 4 , x 2 = 9 x_0=1,x_1=4,x_2=9 x0?=1,x1?=4,x2?=9為插值點,由
L 2 ( x ) = l 0 ( x ) f ( x 0 ) + l 1 ( x ) f ( x 1 ) + l 2 ( x ) f ( x 2 ) L_2(x)=l_0(x)f(x_0)+l_1(x)f(x_1)+l_2(x)f(x_2) L2?(x)=l0?(x)f(x0?)+l1?(x)f(x1?)+l2?(x)f(x2?)
得, 5 ≈ 1 ? ( 5 ? 4 ) ( 5 ? 9 ) ( 1 ? 4 ) ( 1 ? 9 ) + 2 ? ( 5 ? 1 ) ( 5 ? 9 ) ( 4 ? 1 ) ( 4 ? 9 ) + 3 ? ( 5 ? 1 ) ( 5 ? 4 ) ( 9 ? 1 ) ( 9 ? 4 ) ≈ 2.267 \sqrt{5} \approx 1 \cdot \frac{(5-4)(5-9)}{(1-4)(1-9)}+2 \cdot \frac{(5-1)(5-9)}{(4-1)(4-9)}+ 3 \cdot \frac{(5-1)(5-4)}{(9-1)(9-4)} \approx 2.267 5?≈1?(1?4)(1?9)(5?4)(5?9)?+2?(4?1)(4?9)(5?1)(5?9)?+3?(9?1)(9?4)(5?1)(5?4)?≈2.267