中文亚洲精品无码_熟女乱子伦免费_人人超碰人人爱国产_亚洲熟妇女综合网

當(dāng)前位置: 首頁(yè) > news >正文

電子商務(wù)公司名稱(chēng)大全簡(jiǎn)單大氣河北seo公司

電子商務(wù)公司名稱(chēng)大全簡(jiǎn)單大氣,河北seo公司,怎么做網(wǎng)站免費(fèi)優(yōu)化,vm虛擬機(jī)搭建wordpress概述 今天咱們來(lái)看下es中的聚合查詢(xún),在es中聚合查詢(xún)分為三大類(lèi)bucket、metrics、pipeline,每一大類(lèi)下又有十幾種小類(lèi),咱們各舉例集中,有興許的同學(xué)可以參考官網(wǎng):https://www.elastic.co/guide/en/elasticsearch/refere…

概述

今天咱們來(lái)看下es中的聚合查詢(xún),在es中聚合查詢(xún)分為三大類(lèi)bucket、metrics、pipeline,每一大類(lèi)下又有十幾種小類(lèi),咱們各舉例集中,有興許的同學(xué)可以參考官網(wǎng):https://www.elastic.co/guide/en/elasticsearch/reference/7.10/search-aggregations.html?本次基于es7.10.2版本編寫(xiě)。

metics聚合

常用指標(biāo)類(lèi)的聚合無(wú)外乎這幾種:Avg、Min、Max、Sum、Cardinality、Percentile ranks。咱們來(lái)看下具體語(yǔ)法:

Avg、Min、Max、Sum這幾個(gè)雷同只需要換函數(shù)名即可,假如我們有一個(gè)日志索引,其索引mapping如下:

{    "mappings": {        "properties": {            "routePath": {                "type":"keyword"            },            "serverCode": {                "type":"keyword"            },            "taskTime": {                "type":"long"            },            "reuqestMsg": {                "type":"text"            },            "responseMsg": {                "type":"text"            }        }    }}

我們想看下近一月的接口某接口平均耗時(shí)、最小耗時(shí)、最大耗時(shí)等指標(biāo),此時(shí)dsl可以如下編寫(xiě):

GET?/log-2023-02/_serach{    "size": 0,    "query": {        "bool": {            "filter": [                {                    "term": {                        "routePath": "/user/getUserInfo"                    }                }            ]        }    },    "aggs": {        "avg": {????????????"avg":?{                "field": "taskTime"            }        }    }}

返回結(jié)果:

圖片

? ? ? ? 咱們看下如何去重,根據(jù)接口地址去重查詢(xún):

{    "size": 0,    "aggs": {        "cardinality": {            "cardinality": {                "field": "routePath"            }        }    }}

圖片

只是這個(gè)cardinality有誤差,它底層采用的是HyperLogLog的算法,通過(guò)計(jì)算數(shù)據(jù)的hash值來(lái)去重所以有誤差,百萬(wàn)數(shù)據(jù)誤差在5%以?xún)?nèi),我們可以通過(guò)precision_threshold參數(shù)去調(diào)整最大支持4萬(wàn),該值越大耗費(fèi)內(nèi)存也就越大如果數(shù)據(jù)總量在4萬(wàn)以?xún)?nèi)那么調(diào)整到最大值可以保證100%正確。

接下來(lái)咱們看Percentile ranks這個(gè)也是比較常用的聚合分析函數(shù)他的結(jié)果也是有誤差的但是不影響我們分析整體情況,比如我們需要計(jì)算整體系統(tǒng)的性能可以這樣搞:查詢(xún)接口再響應(yīng)這些耗時(shí)上的百分比就可以通過(guò)如下語(yǔ)句???????

{    "size": 0,    "aggs": {        "rate": {            "percentile_ranks": {                "field": "taskTime",                "values": [                    20,                    40,                    50,                    60                ]            }        }    }}

結(jié)果:

圖片

bucket聚合

桶聚合中我們常用的有分組、直方圖、范圍、根據(jù)日期分桶聚合這幾類(lèi),咱們先看下分組查詢(xún)(terms)舉例我們想統(tǒng)計(jì)下各個(gè)接口調(diào)用量情況:???????

{    "size": 0,    "aggs": {        "term": {            "terms": {                "field": "routePath"            }        }    }

返回結(jié)果:???????

"aggregations": {        "term": {            "doc_count_error_upper_bound": 0,            "sum_other_doc_count": 0,            "buckets": [                {                    "key": "/user/getUserInfo",                    "doc_count": 5                },                {                    "key": "/user/addUser",                    "doc_count": 1                },                {                    "key": "/user/updateMobile",                    "doc_count": 1                },                {                    "key": "/user/updateUser",                    "doc_count": 1                }            ]        }    }

咱們?cè)倏粗狈綀D的查詢(xún)統(tǒng)計(jì)接口耗時(shí)、間隔為1:???????

{    "size": 0,    "aggs": {        "histogram": {            "histogram": {                "field": "taskTime",                "interval": 1            }        }    }}

結(jié)果

"aggregations": {        "histogram": {            "buckets": [                {                    "key": 20.0,                    "doc_count": 2                },                {                    "key": 21.0,                    "doc_count": 0                },                {                    "key": 22.0,                    "doc_count": 0????????????????}???????????]????????}????}

根據(jù)日期統(tǒng)計(jì)各接口調(diào)用情況,用直方圖實(shí)行展現(xiàn):???????

{    "size": 0,    "aggs": {        "date_histogram": {            "date_histogram": {                "field": "requestTime",                "interval": "day"            }        }    }}

查詢(xún)結(jié)果:

"aggregations": {        "histogram": {            "buckets": [                {                    "key_as_string": "2023-02-01T00:00:00.000Z",                    "key": 1675209600000,                    "doc_count": 1                },                {                    "key_as_string": "2023-02-02T00:00:00.000Z",                    "key": 1675296000000,                    "doc_count": 1                },                {                    "key_as_string": "2023-02-03T00:00:00.000Z",                    "key": 1675382400000,                    "doc_count": 1                }            ]        }    }

pipeline聚合

它其實(shí)是對(duì)bucket聚合的結(jié)果再次進(jìn)行聚合分期,數(shù)據(jù)準(zhǔn)備:


{ "create" : {  "_index" : "employees" } }
{ "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 }
{ "create" : {  "_index" : "employees" } }
{ "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000}
{ "create" : {  "_index" : "employees" } }
{ "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}

我們根據(jù)以上數(shù)據(jù)想要查詢(xún)平均薪資最低的行業(yè):???????

{  "size": 0,  "aggs": {    "jobs": {      "terms": {        "field": "job.keyword",        "size": 10      },      "aggs": {        "avg_salary": {          "avg": {            "field": "salary"          }        }      }    },    "min_salary_by_job":{??????"min_bucket":?{??#再次進(jìn)行聚合查詢(xún)?將jobs桶下的avg_salary求出最小值        "buckets_path": "jobs>avg_salary"      }    }  }}

結(jié)果如下:???????

"aggregations": {        "jobs": {            "doc_count_error_upper_bound": 0,            "sum_other_doc_count": 0,            "buckets": [                {                    "key": "Java Programmer",                    "doc_count": 7,                    "avg_salary": {                        "value": 25571.428571428572                    }                },                {                    "key": "Javascript Programmer",                    "doc_count": 4,                    "avg_salary": {                        "value": 19250.0                    }????????????????},                {                    "key": "DBA",                    "doc_count": 2,                    "avg_salary": {                        "value": 25000.0                    }????????????????},                {                    "key": "Product Manager",                    "doc_count": 1,                    "avg_salary": {                        "value": 35000.0                    }                }            ]        },        "min_salary_by_job": {            "value": 19250.0,            "keys": [                "Javascript Programmer"            ]        }    }

還有將bucket結(jié)果再次進(jìn)行平均 avg_bucket,bucket結(jié)果再次求最大的max_bucket,bucket結(jié)果再次求百分比的 percentiles_bucket等等。

總結(jié)

基本上咱們把常用的一些聚合查詢(xún)都給大家演示了一遍,當(dāng)然es本身支持的聚合查詢(xún)遠(yuǎn)遠(yuǎn)不止這些,有興趣的同學(xué)可以參考es官網(wǎng)的學(xué)習(xí)手冊(cè):https://www.elastic.co/guide/en/elasticsearch/reference/7.10/index.html 來(lái)探索更多的語(yǔ)法糖。


Elasticsearch系列經(jīng)典文章

  • elasticsearch列一:索引模板的使用

  • elasticsearch系列二:引入索引模板后發(fā)現(xiàn)數(shù)據(jù)達(dá)到一定量還是慢怎么辦?

  • elasticsearch系列三:常用查詢(xún)語(yǔ)法

  • elasticsearch系列四:集群常規(guī)運(yùn)維

  • elasticsearch系列五:集群的備份與恢復(fù)

  • elasticsearch系列六:索引重建

圖片

http://www.risenshineclean.com/news/65457.html

相關(guān)文章:

  • 百度SEO是誰(shuí)做的網(wǎng)站app開(kāi)發(fā)公司
  • 修改wordpress標(biāo)簽大小seo網(wǎng)絡(luò)科技有限公司
  • 寶雞外貿(mào)網(wǎng)站建設(shè)百度搜索app免費(fèi)下載
  • 怎么樣通過(guò)做網(wǎng)站賺錢(qián)嗎用網(wǎng)站模板建站
  • 1建設(shè)網(wǎng)站的重要性西安seo排名優(yōu)化推廣價(jià)格
  • 網(wǎng)站建設(shè)的意義發(fā)帖推廣哪個(gè)平臺(tái)好
  • 一個(gè)公網(wǎng)ip可以做幾個(gè)網(wǎng)站網(wǎng)絡(luò)建站公司
  • 政府 內(nèi)部 網(wǎng)站沈陽(yáng)網(wǎng)絡(luò)優(yōu)化培訓(xùn)
  • 網(wǎng)站變更備案免費(fèi)聊天軟件
  • 做哪種網(wǎng)站流量上的快東莞網(wǎng)站建設(shè)最牛
  • 從做系統(tǒng)怎么找一起的收藏網(wǎng)站推廣技術(shù)
  • 旅游電子商務(wù)網(wǎng)站今日軍事新聞?lì)^條打仗
  • 我國(guó)基層政府網(wǎng)站建設(shè)情況關(guān)鍵詞seo是什么
  • 官網(wǎng)站超鏈接怎么做太倉(cāng)網(wǎng)站制作
  • 有哪些網(wǎng)站做的很有特色搜索引擎提交入口網(wǎng)址
  • 合肥論壇網(wǎng)站建設(shè)如何制作app軟件
  • 做推廣的網(wǎng)站名稱(chēng)百度seo排名優(yōu)化軟件
  • 網(wǎng)站的域名起什么好處最火的網(wǎng)絡(luò)推廣平臺(tái)
  • 高密做網(wǎng)站的公司seo的主要內(nèi)容
  • 網(wǎng)站備案 材料百度刷首頁(yè)怎么刷
  • 外貿(mào)公司網(wǎng)站制作公司網(wǎng)絡(luò)營(yíng)銷(xiāo)成功案例3篇
  • 用手機(jī)搭建自己的網(wǎng)站推廣什么app傭金高
  • 在線(xiàn)企業(yè)建站服務(wù)提高網(wǎng)站排名軟件
  • 徐匯網(wǎng)站建設(shè)磁力蜘蛛種子搜索
  • 如何利用js來(lái)做網(wǎng)站表單seo 百度網(wǎng)盤(pán)
  • 荊門(mén)哪里有專(zhuān)門(mén)做企業(yè)網(wǎng)站的影視后期培訓(xùn)機(jī)構(gòu)全國(guó)排名
  • 微企點(diǎn)做的網(wǎng)站百度搜得到嗎做網(wǎng)站的費(fèi)用
  • 杭州營(yíng)銷(xiāo)seo顧問(wèn)服務(wù)四川
  • 佛山正規(guī)企業(yè)網(wǎng)站排名優(yōu)化關(guān)鍵詞分類(lèi)
  • 網(wǎng)站實(shí)名認(rèn)證要錢(qián)嗎上海網(wǎng)站營(yíng)銷(xiāo)推廣