做微網(wǎng)站迅宇科技網(wǎng)店推廣是什么
引言:
Word2Vec 是一種強(qiáng)大的詞向量表示方法,通常通過訓(xùn)練神經(jīng)網(wǎng)絡(luò)來學(xué)習(xí)詞匯中的詞語嵌入。它可以捕捉詞語之間的語義關(guān)系,對于許多自然語言處理任務(wù),包括情感分析,都表現(xiàn)出色。?
代碼:
重點(diǎn)代碼:
# 將文本轉(zhuǎn)換為Word2Vec向量表示
def text_to_vector(text):vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeX_train_w2v = [text_to_vector(text) for text in X_train]
X_test_w2v = [text_to_vector(text) for text in X_test]
處理后的詞向量:
?
完整代碼?:
import jieba
from gensim.models import Word2Vec
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 假設(shè)你有一個包含文本和標(biāo)簽的數(shù)據(jù)集
# 數(shù)據(jù)集格式:[(文本1, 標(biāo)簽1), (文本2, 標(biāo)簽2), ...]
data = [("這是一條正面的評論", 1),("這是一條負(fù)面的評論", 0),# ... 其他樣本]# 分詞
def chinese_word_cut(text):return list(jieba.cut(text))# 對文本進(jìn)行分詞處理
data_cut = [(chinese_word_cut(text), label) for text, label in data]# 劃分訓(xùn)練集和測試集
X, y = zip(*data_cut)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 訓(xùn)練Word2Vec模型
word2vec_model = Word2Vec(sentences=X, vector_size=100, window=5, min_count=1, workers=4)# 將文本轉(zhuǎn)換為Word2Vec向量表示
def text_to_vector(text):vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_sizeX_train_w2v = [text_to_vector(text) for text in X_train]
X_test_w2v = [text_to_vector(text) for text in X_test]# 創(chuàng)建SVM分類器
svm_classifier = SVC(kernel='linear')# 訓(xùn)練模型
svm_classifier.fit(X_train_w2v, y_train)# 預(yù)測
y_pred = svm_classifier.predict(X_test_w2v)# 評估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
注意:
這里的訓(xùn)練數(shù)據(jù)和預(yù)測數(shù)據(jù)只有1條,模型并不能訓(xùn)練。如需訓(xùn)練需要提供完整訓(xùn)練數(shù)據(jù)或提供預(yù)訓(xùn)練模型。
?