中文亚洲精品无码_熟女乱子伦免费_人人超碰人人爱国产_亚洲熟妇女综合网

當(dāng)前位置: 首頁(yè) > news >正文

我國(guó)政府信息門(mén)戶(hù)網(wǎng)站建設(shè)研究seo排名優(yōu)化技術(shù)

我國(guó)政府信息門(mén)戶(hù)網(wǎng)站建設(shè)研究,seo排名優(yōu)化技術(shù),大良營(yíng)銷(xiāo)網(wǎng)站建設(shè)服務(wù),連云港優(yōu)化推廣1. 不動(dòng)點(diǎn)定理及其條件驗(yàn)證2. 收斂階、收斂檢測(cè)與收斂加速2.1 如何估計(jì)不動(dòng)點(diǎn)迭代的收斂階xk1g(xk){x}_{{k}1}{g}\left({x}_{{k}}\right)xk1?g(xk?)2.2 給定精度的情況下,如何預(yù)測(cè)不動(dòng)點(diǎn)迭代需要迭代的次數(shù)2.3 如何加快收斂的速度2.4 停止不定點(diǎn)迭代的條件2.5 不動(dòng)…

1. 不動(dòng)點(diǎn)定理及其條件驗(yàn)證

不動(dòng)點(diǎn)定義P=g(P){P}={g}({P})P=g(P)
不定點(diǎn)迭代xk+1=g(xk){x}_{{k}+1}={g}\left({x}_{{k}}\right)xk+1?=g(xk?)
定理: 如果g(xk)g({x_k})g(xk?)是連續(xù)的并且序列xk{x_k}xk?是收斂的,xk{x_k}xk?收斂到方程的解:x=g(x){x}=g({x})x=g(x)
x?=g(x?)and?xk?>x?{x}^{*}={g}\left({x}^{*}\right) \text { and } {x}_{{k}}->{x}^{*}x?=g(x?)?and?xk??>x?

在這里插入圖片描述

定理: 假設(shè)
(1) 對(duì)于g(x)g(x)g(x)g′(x)∈C[a,b]g'(x)\in C[a,b]g(x)C[a,b](連續(xù))
(2) KKK是一個(gè)正的常數(shù)
(3) p0∈(a,b)p_0\in(a,b)p0?(a,b)
(4) g(x)∈[a,b],?x∈[a,b]g(x)\in[a,b],\forall x\in[a,b]g(x)[a,b],?x[a,b]
那么
(a) 如果∣g′(x)∣≤K<1,?x∈[a,b],xk+1=g(xk)\left|\mathrm{g}^{\prime}(x)\right| \leq \mathrm{K}<1 , \forall x \in[\mathrm{a}, \mathrm], \mathrm{x}_{\mathrm{k}+1}=\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)g(x)K<1?x[a,b],xk+1?=g(xk?)收斂。
(b) 如果∣g′(x)∣>1,?x∈[a,b],xk+1=g(xk)\left|\mathrm{g}^{\prime}(x)\right|>1 , \forall x \in[\mathrm{a}, \mathrm], \mathrm{x}_{\mathrm{k}+1}=\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)g(x)>1?x[a,b],xk+1?=g(xk?)不收斂

曲線(xiàn)的切線(xiàn)斜率k∈(?1,1)k\in(-1,1)k(?1,1)看下面的圖逐漸收斂:

在這里插入圖片描述

在這里插入圖片描述
曲線(xiàn)的切線(xiàn)斜率k∈[?∞,?1)∪(1,∞]k\in[-\infty,-1)\cup (1,\infty]k[?,?1)(1,]看下面的圖不收斂:

在這里插入圖片描述
在這里插入圖片描述
綜上所述,不動(dòng)點(diǎn)迭代滿(mǎn)足最重要的是:

(1)∣g′(x)∣≤K<1,?x∈[a,b]【g′(x)的邊界條件】(2)g(x)∈[a,b],?x∈[a,b],并且有g(shù)([a,b])?[a,b]【g(x)的邊界條件】\begin{aligned}&(1) \left|\mathrm{g}^{\prime}(x)\right| \leq \mathrm{K}<1 ,\forall x \in[\mathrm{a}, \mathrm] & 【g'(x)的邊界條件】\\ &(2) \mathrm{g}(x) \in[\mathrm{a}, \mathrm] , \forall x \in[\mathrm{a}, \mathrm] ,并且有g(shù)([a, b]) \subset[a, b]& 【g(x)的邊界條件】\end{aligned}?(1)g(x)K<1,?x[a,b](2)g(x)[a,b]?x[a,b],并且有g([a,b])?[a,b]?g(x)的邊界條件】g(x)的邊界條件】?

單調(diào)和非單調(diào)要分別判斷邊界條件,單調(diào)的g(x)的范圍看端點(diǎn)就可以了,非單調(diào)還要看極值點(diǎn)。
在這里插入圖片描述

2. 收斂階、收斂檢測(cè)與收斂加速

定義;
∣xk+1?x?∣≤C∣xk?x?∣p,k>M,?for?C>0,p>0\left|x_{k+1}-x^{*}\right| \leq C\left|x_{k}-x^{*}\right|^{p}, k>M \text {, for } C>0, p>0xk+1??x?Cxk??x?p,k>M,?for?C>0,p>0

lim?k→∞∣xk+1?x?∣∣xk?x?∣p=C\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{p}}=Cklim?xk??x?pxk+1??x??=C
ppp階收斂
其中:
p=1p=1p=1 , 線(xiàn)性收斂(linear convergence)
1<p<21<p<21<p<2 , 超線(xiàn)性收斂(superlinear convergence)
p=2p=2p=2 , 平方收斂(square convergence)

2.1 如何估計(jì)不動(dòng)點(diǎn)迭代的收斂階xk+1=g(xk){x}_{{k}+1}={g}\left({x}_{{k}}\right)xk+1?=g(xk?)

定理;設(shè)x?x^*x?是最優(yōu)解,如果g′(x?)=g′′(x?)=…=g(p?1)(x?)=0g^{\prime}\left(x^{*}\right)=g^{\prime \prime}\left(x^{*}\right)=\ldots=g^{(p-1)}\left(x^{*}\right)=0g(x?)=g′′(x?)==g(p?1)(x?)=0, g(p)(x?)≠0g^{(p)}\left(x^{*}\right) \neq 0g(p)(x?)=0xk+1=g(xk)x_{k+1}=g\left(x_{k}\right)xk+1?=g(xk?)ppp階收斂。

證明
xk+1=g(xk)=g(x?)+g′(x?)(xk?x?)+…+g(p?1)(x?)(xk?x?)p?1(p?1)!+g(p)(ξ)(xk?x?)pp!,【ξ∈[xk,x?]或[x?,xk]】?xk+1=x?+g(p)(ξ)(xk?x?)pp!?xk+1?x?(xk?x?)p=g(p)(ξ)p!→g(p)(x?)p!\begin{aligned} x_{k+1}&=g\left(x_{k}\right)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x_{k}-x^{*}\right)+\ldots\\&+\frac{g^{(p-1)}\left(x^{*}\right)\left(x_{k}-x^{*}\right)^{p-1}}{(p-1) !} +\frac{g^{(p)}(\xi)\left(x_{k}-x^{*}\right)^{p}}{p !}, \quad【\xi \in\left[x_{k}, x^{*}\right] 或\left[x^{*}, x_{k}\right] 】\\ \Rightarrow& x_{k+1}=x^{*}+\frac{g^{(p)}(\xi)\left(x_{k}-x^{*}\right)^{p}}{p !} \\ \Rightarrow& \frac{x_{k+1}-x^{*}}{\left(x_{k}-x^{*}\right)^{p}}=\frac{g^{(p)}(\xi)}{p !} \rightarrow \frac{g^{(p)}\left(x^{*}\right)}{p !} \end{aligned}xk+1????=g(xk?)=g(x?)+g(x?)(xk??x?)++(p?1)!g(p?1)(x?)(xk??x?)p?1?+p!g(p)(ξ)(xk??x?)p?,ξ[xk?,x?][x?,xk?]xk+1?=x?+p!g(p)(ξ)(xk??x?)p?(xk??x?)pxk+1??x??=p!g(p)(ξ)?p!g(p)(x?)??

2.2 給定精度的情況下,如何預(yù)測(cè)不動(dòng)點(diǎn)迭代需要迭代的次數(shù)

定義L=max?x∈[a,b]{∣g′(x)∣}<1L=\max _{x \in[a, b]}\left\{\left|g^{\prime}(x)\right|\right\}<1L=maxx[a,b]?{g(x)}<1
迭代的次數(shù)滿(mǎn)足k≥ln?(ε(1?L)/∣x1?x0∣)/ln?Lk \geq \ln \left(\varepsilon(1-L) /\left|x_{1}-x_{0}\right|\right) / \ln Lkln(ε(1?L)/x1??x0?)/lnL

證明:
xk+1=g(xk)=g(x?)+g′(ξ)(xk?x?)=x?+g′(ξ)(xk?x?)?∣xk+1?x?∣≤∣g′(ξ)∥(xk?x?)∣≤L∣xk?x?∣≤Lk∣x1?x?∣\begin{aligned}x_{k+1}=g\left(x_{k}\right)=g\left(x^{*}\right)+g^{\prime}(\xi)\left(x_{k}-x^{*}\right)=x^{*}+g^{\prime}(\xi)\left(x_{k}-x^{*}\right)\\ \Rightarrow \left|x_{k+1}-x^{*}\right| \leq\left|g^{\prime}(\xi) \|\left(x_{k}-x^{*}\right)\right| \leq L\left|x_{k}-x^{*}\right|\le L^{k}\left|x_{1}-x^{*}\right|\end{aligned}xk+1?=g(xk?)=g(x?)+g(ξ)(xk??x?)=x?+g(ξ)(xk??x?)?xk+1??x?g(ξ)(xk??x?)Lxk??x?Lkx1??x??
又有
∣xk+1?xk∣=∣g(xk)?g(xk?1)∣≤L∣xk?xk?1∣≤Lk∣x1?x0∣\left|x_{k+1}-x_{k}\right|=\left|g\left(x_{k}\right)-g\left(x_{k-1}\right)\right| \leq L\left|x_{k}-x_{k-1}\right| \leq L^{k}\left|x_{1}-x_{0}\right| xk+1??xk?=g(xk?)?g(xk?1?)Lxk??xk?1?Lkx1??x0?
于是有:
∣xk+q?xk∣≤∣xk+q?xk+q?1∣+∣xk+q?1?xk+q?2∣+…+∣xk+1?xk∣≤(Lq?1+Lq?2+…+1)∣xk+1?xk∣<(1+L+L2+…+Lq?1+…)∣xk+1?xk∣=11?L∣xk+1?xk∣≤Lk1?L∣x1?x0∣\begin{aligned} &\left|x_{k+q}-x_{k}\right| \leq\left|x_{k+q}-x_{k+q-1}\right|+\left|x_{k+q-1}-x_{k+q-2}\right|+\ldots+\left|x_{k+1}-x_{k}\right| \\ &\leq\left(L^{q-1}+L^{q-2}+\ldots+1\right)\left|x_{k+1}-x_{k}\right|\\&<\left(1+L+L^{2}+\ldots+L^{q-1}+\ldots\right)\left|x_{k+1}-x_{k}\right|\\ &=\frac{1}{1-L}\left|x_{k+1}-x_{k}\right| \\&\leq \frac{L^{k}}{1-L}\left|x_{1}-x_{0}\right| \end{aligned}?xk+q??xk?xk+q??xk+q?1?+xk+q?1??xk+q?2?++xk+1??xk?(Lq?1+Lq?2++1)xk+1??xk?<(1+L+L2++Lq?1+)xk+1??xk?=1?L1?xk+1??xk?1?LLk?x1??x0??

q→∞q \rightarrow \inftyq

∣x??xk∣≤11?L∣xk+1?xk∣≤Lk1?L∣x1?x0∣\left|x^{*}-x_{k}\right| \leq \frac{1}{1-L}\left|x_{k+1}-x_{k}\right| \leq \frac{L^{k}}{1-L}\left|x_{1}-x_{0}\right|x??xk?1?L1?xk+1??xk?1?LLk?x1??x0?

于是:

Lk1?L∣x1?x0∣≤ε?k≥ln?(ε(1?L)/∣x1?x0∣)/ln?L\frac{L^{k}}{1-L}\left|x_{1}-x_{0}\right| \leq \varepsilon \Rightarrow k \geq \ln \left(\varepsilon(1-L) /\left|x_{1}-x_{0}\right|\right) / \ln L1?LLk?x1??x0?ε?kln(ε(1?L)/x1??x0?)/lnL

2.3 如何加快收斂的速度

xk+1?x?≈L(xk?x?)xk+2?x?≈L(xk+1?x?)xk+1?x?xk+2?x?≈xk?x?xk+1?x??x?≈xk?(xk+1?xk)2xk+2?2xk+1+xk=xΔ\begin{aligned} &x_{k+1}-x^{*} \approx L\left(x_{k}-x^{*}\right) \\ &x_{k+2}-x^{*} \approx L\left(x_{k+1}-x^{*}\right) \\ &\frac{x_{k+1}-x^{*}}{x_{k+2}-x^{*}} \approx \frac{x_{k}-x^{*}}{x_{k+1}-x^{*}} \Rightarrow\quad x^{*} \approx x_{k}-\frac{\left(x_{k+1}-x_{k}\right)^{2}}{x_{k+2}-2 x_{k+1}+x_{k}}=x^{\Delta} \end{aligned}?xk+1??x?L(xk??x?)xk+2??x?L(xk+1??x?)xk+2??x?xk+1??x??xk+1??x?xk??x???x?xk??xk+2??2xk+1?+xk?(xk+1??xk?)2?=xΔ?

根據(jù)上面的思路我們可以:

Iterationxˉk+1=g(xk)Onemorex^k+1=g(xˉk+1)Tospeedupxk+1=xk?(xˉk+1?xk)2x^k+1?2xˉk+1+xk\begin{aligned}Iteration &\quad \bar{x}_{k+1}=g\left(x_{k}\right) \\ One more &\quad \hat{x}_{k+1}=g\left(\bar{x}_{k+1}\right) \\ To\, speed \,up &\quad x_{k+1}=x_{k}-\frac{\left(\bar{x}_{k+1}-x_{k}\right)^{2}}{\hat{x}_{k+1}-2 \bar{x}_{k+1}+x_{k}} \end{aligned}IterationOnemoreTospeedup?xˉk+1?=g(xk?)x^k+1?=g(xˉk+1?)xk+1?=xk??x^k+1??2xˉk+1?+xk?(xˉk+1??xk?)2??

2.4 停止不定點(diǎn)迭代的條件

當(dāng)L=max?x∈[a,b]{∣g′(x)∣}<1L=\max _{x \in[a, b]}\left\{\left|g^{\prime}(x)\right|\right\}<1L=maxx[a,b]?{g(x)}<1時(shí),可以使用下面的條件:

∣xk+1?xk∣<eps\left|x_{\mathrm{k}+1}-x_{\mathrm{k}}\right|<\mathrm{eps}xk+1??xk?<eps

2.5 不動(dòng)點(diǎn)迭代的兩個(gè)缺點(diǎn)

  1. 很難估計(jì)L(max?x∈[a,b]{∣g′(x)∣})L(\max _{x \in[a, b]}\left\{\left|g^{\prime}(x)\right|\right\})L(maxx[a,b]?{g(x)})
  2. L<1L<1L<1時(shí)無(wú)法收斂。

3. 應(yīng)用:如何求解非線(xiàn)性方程組f(x)=0f(x)=0f(x)=0的解

在這里插入圖片描述

3.1 二分法(Bisection Method of Bolzano)

算法的流程

  1. 用一個(gè)區(qū)間找到一個(gè)根。
  2. 用中點(diǎn)分割該區(qū)間。
  3. 選擇其中的一個(gè)子區(qū)間作為新的位置。

在這里插入圖片描述

a=x0,b=x0+hc=a+b2f(a)f(b)<0,\begin{aligned} &a=x_{0}, \quad b=x_{0}+h \\ &c=\frac{a+b}{2}\\ &f(a) f(b)<0, \end{aligned}?a=x0?,b=x0?+hc=2a+b?f(a)f(b)<0,?
于是:

在這里插入圖片描述

[a,b]→[a1,b1]→[a2,b2]→…→[an,bn]a=a0≤a1≤?≤an≤?≤r≤?≤bn≤?≤b1≤b0=b\begin{aligned} &{[{a}, ]\rightarrow\left[{a}_{1}, {~b}_{1}\right]\rightarrow \left[{a}_{2}, {~b}_{2}\right]\rightarrow\ldots\rightarrow\left[{a}_{{n}}, _{{n}}\right]} \\ &a=a_{0} \leq a_{1} \leq \cdots \leq a_{n} \leq \cdots \leq r \leq \cdots \leq b_{n} \leq \cdots \leq b_{1} \leq b_{0}=b \end{aligned}?[a,b][a1?,?b1?][a2?,?b2?][an?,bn?]a=a0?a1??an??r?bn??b1?b0?=b?
定義rrr是精確解。
∣r?cn∣≤b?a2n+1,for?n=0,1,2,…cn=an+bn2\begin{aligned} &\left|r-c_{n}\right| \leq \frac{b-a}{2^{n+1}}, \text { for } n=0,1,2, \ldots \\ &c_{n}=\frac{a_{n}+b_{n}}{2} \end{aligned}?r?cn?2n+1b?a?,?for?n=0,1,2,cn?=2an?+bn???

迭代次數(shù)N

∣r?cn∣≤b?a2n+1<δ2n+1>b?aδ(n+1)ln?2>ln?(b?a)?ln?δn+1>ln?(b?a)?ln?δln?2N=int?(ln?(b?a)?ln?δln?2)\begin{aligned} &\left|r-c_{n}\right| \leq \frac{b-a}{2^{n+1}}<\delta \\ &2^{n+1}>\frac{b-a}{\delta} \\ &(n+1) \ln 2>\ln (b-a)-\ln \delta \\ &n+1>\frac{\ln (b-a)-\ln \delta}{\ln 2} \\ &N=\operatorname{int}\left(\frac{\ln (b-a)-\ln \delta}{\ln 2}\right) \end{aligned}?r?cn?2n+1b?a?<δ2n+1>δb?a?(n+1)ln2>ln(b?a)?lnδn+1>ln2ln(b?a)?lnδ?N=int(ln2ln(b?a)?lnδ?)?

簡(jiǎn)單地利用二分法可以判斷區(qū)間內(nèi)有沒(méi)有零點(diǎn)(區(qū)間內(nèi)有變號(hào)【可取最大值和最小值】)

3.2 試位法(False Position Method)

算法的流程

  1. 用一個(gè)區(qū)間找到一個(gè)根。
  2. 以割線(xiàn)與X軸的交點(diǎn)劃分區(qū)間。(過(guò)程中仍然保證端點(diǎn)的異號(hào),讓區(qū)間包含零點(diǎn))
  3. 選擇其中一個(gè)子區(qū)間作為新的位置。

c=b?f(b)(b?a)f(b)?f(a)c1→c2→…→r[an,bn]→[a,c]:=[an+1,bn+1]c=b-\frac{f(b)(b-a)}{f(b)-f(a)}\\ c_{1}\rightarrow c_{2}\rightarrow \ldots\rightarrow r\\ \left[a_{n}, b_{n}\right]\rightarrow [a, c]:=\left[a_{n+1}, b_{n+1}\right]c=b?f(b)?f(a)f(b)(b?a)?c1?c2?r[an?,bn?][a,c]:=[an+1?,bn+1?]

在這里插入圖片描述

缺點(diǎn):在凹函數(shù)下不適用,不會(huì)收斂。

3.3 牛頓-拉夫遜方法(Newton-Raphson method)

我們知道不動(dòng)點(diǎn)迭代,能不能用到求解非線(xiàn)性方程組呢?

使用泰勒展式:

f(xk+1)=f(xk)+f′(xk)(xk+1?xk)+O(∣d∣2)=0f(x_{k+1})=f\left(x_{{k}}\right)+f^{\prime}\left(x_{{k}}\right) (x_{k+1}-x_k)+{O}\left(|d|^{2}\right)=0f(xk+1?)=f(xk?)+f(xk?)(xk+1??xk?)+O(d2)=0

于是我們可以讓

f(xk)+f′(xk)(xk+1?xk)=0f\left(x_{\mathrm{k}}\right)+f^{\prime}\left(x_{\mathrm{k}}\right)\left(x_{{k}+1}-x_{{k}}\right)=0f(xk?)+f(xk?)(xk+1??xk?)=0

使得:

xk+1=xk?f(xk)/f′(xk)=g(xk)x_{\mathrm{k}+1}=x_{{k}}-f\left(x_{\mathrm{k}}\right) / f^{\prime}\left(x_{\mathrm{k}}\right)=g(x_k)xk+1?=xk??f(xk?)/f(xk?)=g(xk?)

總結(jié)Newton-Raphson方法即:

f(x)=0x=g(x)=x?f(x)f′(x)xk+1=g(xk)=xk?f(xk)f′(xk)\begin{array}{l} f(x)=0 \\ x=g(x)=x-\frac{f(x)}{f^{\prime}(x)} \\ x_{k+1}=g\left(x_{k}\right)=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \end{array}f(x)=0x=g(x)=x?f(x)f(x)?xk+1?=g(xk?)=xk??f(xk?)f(xk?)??

在這里插入圖片描述

我們可以證明在解的附近,Newton-Raphson方法是收斂的。

證明:

g(x)=x?f(x)/f′(x)g(x)=x-f(x) / f^{\prime}(x)g(x)=x?f(x)/f(x)

g′(x)=1?f′(x)f′(x)?f(x)f′′(x)[f′(x)]2=f(x)f′′(x)[f′(x)]2g^{\prime}(x)=1-\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}g(x)=1?[f(x)]2f(x)f(x)?f(x)f′′(x)?=[f(x)]2f(x)f′′(x)?

我們知道不動(dòng)點(diǎn)的條件是∣g′(x)∣<K<1\left|g^{\prime}(x)\right|<K<1g(x)<K<1,當(dāng)我們?nèi)〉泥徲蜃銐蛐?#xff0c;條件g([a,b])?[a,b]g([a, b]) \subset[a, b]g([a,b])?[a,b]會(huì)滿(mǎn)足,注意到f(x?)=0f(x^*)=0f(x?)=0,在解的鄰域附近,因?yàn)?span id="vxwlu0yf4" class="katex--inline">f(x)=0f(x)=0f(x)=0,所以g′(x)=0g'(x)=0g(x)=0。

各種條件下的推導(dǎo)(不做要求,想了解可以看一下)

  1. f′(x?)>0and?f′′(x?)<0,g([x??δ,x?+δ])?[x??δ,x?+δ]f^{\prime}\left(x^{*}\right)>0 \text { and } f^{\prime \prime}\left(x^{*}\right)<0, \,\,\,\,g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subset\left[x^{*}-\delta, x^{*}+\delta\right]f(x?)>0?and?f′′(x?)<0,g([x??δ,x?+δ])?[x??δ,x?+δ]
    在這里插入圖片描述
    x??δ<g(x??δ)=(x??δ)?f(x??δ)f′(x??δ)?0<?f(x??δ)f′(x??δ)?f(x??δ)f′(x??δ)<0?f(x??δ)<0?f(x?)?f′(ξ)δ<0【ξ∈[x??δ,x?]】??f′(ξ)δ<0??δ1>0,f′(ξ)>0,for?x??ξ<δ1\begin{aligned} &x^{*}-\delta<g\left(x^{*}-\delta\right)=\left(x^{*}-\delta\right)-\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)} \\ \Leftrightarrow& 0<-\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)} \\ \Leftrightarrow &\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)}<0 \\ \Leftrightarrow &f\left(x^{*}-\delta\right)<0 \\ \Leftrightarrow &f\left(x^{*}\right)-f^{\prime}(\xi) \delta<0 【\xi\in[x^*-\delta,x^*]】\\ \Leftrightarrow&-f^{\prime}(\xi) \delta<0\\ \Rightarrow&\exists \delta_1>0, f^{\prime}(\xi)>0, \text { for } x^{*}-\xi<\delta_1 \\ \end{aligned}???????x??δ<g(x??δ)=(x??δ)?f(x??δ)f(x??δ)?0<?f(x??δ)f(x??δ)?f(x??δ)f(x??δ)?<0f(x??δ)<0f(x?)?f(ξ)δ<0ξ[x??δ,x?]?f(ξ)δ<0?δ1?>0,f(ξ)>0,?for?x??ξ<δ1??
    又有
    f′′(x?)<0??δ2>0,f′′(x)<0【保號(hào)性】?g′(x)=f(x)f′′(x)[f′(x)]2>0,for?x??x<δ2【δ2足夠小,導(dǎo)數(shù)保號(hào)性,f′(x)>0,x<x?,f(x?)=0,f(x)<0】\begin{aligned} &f^{\prime \prime}\left(x^{*}\right)<0\\ \Rightarrow & \exists \delta_2>0, f^{\prime \prime}(x)<0 【保號(hào)性】\\ \Rightarrow & g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}>0, \text { for } x^{*}-x<\delta_2\\ &【\delta_2足夠小,導(dǎo)數(shù)保號(hào)性,f'(x)>0,x<x^*,f(x^*)=0,f(x)<0】 \end{aligned}???f′′(x?)<0?δ2?>0,f′′(x)<0【保號(hào)性】g(x)=[f(x)]2f(x)f′′(x)?>0,?for?x??x<δ2?δ2?足夠小,導(dǎo)數(shù)保號(hào)性,f(x)>0,x<x?,f(x?)=0f(x)<0?
    當(dāng)δ<min?{δ1,δ2}\delta<\min\{\delta_1,\delta_2\}δ<min{δ1?,δ2?}有:
    x??δ<g(x??δ)<g(x),for?x??x<δx^{*}-\delta<g\left(x^{*}-\delta\right)<g(x), \text { for } x^{*}-x<\deltax??δ<g(x??δ)<g(x),?for?x??x<δ
  2. f′(x?)>0and?f′′(x?)<0,g([x??δ,x?+δ])?[x??δ,x?+δ]f^{\prime}\left(x^{*}\right)>0 \text { and } f^{\prime \prime}\left(x^{*}\right)<0, \,\,\,\,g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subset\left[x^{*}-\delta, x^{*}+\delta\right]f(x?)>0?and?f′′(x?)<0,g([x??δ,x?+δ])?[x??δ,x?+δ]
    在這里插入圖片描述
    x??δ<g(x??δ)=(x??δ)?f(x??δ)f′(x??δ)?0<?f(x??δ)f′(x??δ)?f(x??δ)f′(x??δ)<0?f(x??δ)<0?f(x?)?f′(ξ)δ<0【ξ∈[x??δ,x?]】??f′(ξ)δ<0??δ1>0,f′(ξ)>0,for?x??ξ<δ1\begin{aligned} &x^{*}-\delta<g\left(x^{*}-\delta\right)=\left(x^{*}-\delta\right)-\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)} \\ \Leftrightarrow& 0<-\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)} \\ \Leftrightarrow &\frac{f\left(x^{*}-\delta\right)}{f^{\prime}\left(x^{*}-\delta\right)}<0 \\ \Leftrightarrow &f\left(x^{*}-\delta\right)<0 \\ \Leftrightarrow &f\left(x^{*}\right)-f^{\prime}(\xi) \delta<0 【\xi\in[x^*-\delta,x^*]】\\ \Leftrightarrow&-f^{\prime}(\xi) \delta<0\\ \Rightarrow&\exists \delta_1>0, f^{\prime}(\xi)>0, \text { for } x^{*}-\xi<\delta_1 \\ \end{aligned}???????x??δ<g(x??δ)=(x??δ)?f(x??δ)f(x??δ)?0<?f(x??δ)f(x??δ)?f(x??δ)f(x??δ)?<0f(x??δ)<0f(x?)?f(ξ)δ<0ξ[x??δ,x?]?f(ξ)δ<0?δ1?>0,f(ξ)>0,?for?x??ξ<δ1??
    又有
    f′′(x?)>0??δ2>0,f′′(x)<0【保號(hào)性】?g′(x)=f(x)f′′(x)[f′(x)]2<0,for?x??x<δ2【δ2足夠小,導(dǎo)數(shù)保號(hào)性,f′(x)>0,x<x?,f(x?)=0,f(x)<0】\begin{aligned} &f^{\prime \prime}\left(x^{*}\right)>0\\ \Rightarrow & \exists \delta_2>0, f^{\prime \prime}(x)<0 【保號(hào)性】\\ \Rightarrow & g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}<0, \text { for } x^{*}-x<\delta_2\\ &【\delta_2足夠小,導(dǎo)數(shù)保號(hào)性,f'(x)>0,x<x^*,f(x^*)=0,f(x)<0】 \end{aligned}???f′′(x?)>0?δ2?>0,f′′(x)<0【保號(hào)性】g(x)=[f(x)]2f(x)f′′(x)?<0,?for?x??x<δ2?δ2?足夠小,導(dǎo)數(shù)保號(hào)性,f(x)>0,x<x?,f(x?)=0f(x)<0?
    當(dāng)δ<min?{δ1,δ2}\delta<\min\{\delta_1,\delta_2\}δ<min{δ1?,δ2?}有:
    x??δ<x?=g(x?)<g(x),for?x??x<δ,x<x?x^{*}-\delta<x^{*}=g\left(x^{*}\right)<g(x), \text { for } x^{*}-x<\delta,x<x^*x??δ<x?=g(x?)<g(x),?for?x??x<δ,x<x?

注意Newton-Raphson方法對(duì)于單根是二階收斂(二次收斂)【quadratic convergence】

∣En+1∣≈∣f′′(p)∣2∣f′(p)∣∣En∣2n→∞\left|E_{n+1}\right| \approx \frac{\left|f^{\prime \prime}(p)\right|}{2\left|f^{\prime}(p)\right|}\left|E_{n}\right|^{2}\quad n\rightarrow \inftyEn+1?2f(p)f′′(p)?En?2n

證明:
在這里插入圖片描述

而對(duì)于多重根是線(xiàn)性(一次)收斂,收斂速度降低。

∣En+1∣≈M?1M∣En∣n→∞\left|E_{n+1}\right| \approx \frac{M-1}{M}\left|E_{n}\right |\quad n\rightarrow \inftyEn+1?MM?1?En?n

證明:
在這里插入圖片描述
如果出現(xiàn)了多重根p?p^*p?,我們看到在f′(p?)=0f'(p^*)=0f(p?)=0,Newton-Raphson方法的分母會(huì)出現(xiàn)0.然而一般來(lái)說(shuō),分子f(pk)f(p_k)f(pk?)要比分母f′(pk)f'(p_k)f(pk?)先出現(xiàn)0,所以Newton-Raphson方法一般還是可以用的。

Newton-Raphson方法的問(wèn)題

1.分母可能為0,除以零是不允許的。
2.收斂到一個(gè)不同的根,或發(fā)散。
3.產(chǎn)生一個(gè)循環(huán)序列。
4.產(chǎn)生一個(gè)發(fā)散的振蕩序列。
在這里插入圖片描述

由于多重根線(xiàn)性收斂的問(wèn)題,可以考慮Newton-Raphson方法加速:
pk=pk?1?Mf(pk?1)f′(pk?1)M>1p_{k}=p_{k-1}-\frac{M f\left(p_{k-1}\right)}{f^{\prime}\left(p_{k-1}\right)}\quad M>1pk?=pk?1??f(pk?1?)Mf(pk?1?)?M>1

證明
在這里插入圖片描述

3.4 割線(xiàn)法(Secant Method)

在這里插入圖片描述
當(dāng)Newton-Raphson的導(dǎo)數(shù)不好顯式表達(dá)的時(shí)候,可以通過(guò)兩端點(diǎn)的直線(xiàn)的斜率來(lái)近似導(dǎo)數(shù)。

我們有:

xk+2=g(xk,xk+1)=xk+1?f(xk+1)(xk+1?xk)f(xk+1)?f(xk)x_{k+2}=g\left(x_{k}, x_{k+1}\right)=x_{k+1}-\frac{f\left(x_{k+1}\right)\left(x_{k+1}-x_{k}\right)}{f\left(x_{k+1}\right)-f\left(x_{k}\right)}xk+2?=g(xk?,xk+1?)=xk+1??f(xk+1?)?f(xk?)f(xk+1?)(xk+1??xk?)?

3.5 Aitken過(guò)程加速

使用不定點(diǎn)的迭代,Aitken過(guò)程加速又稱(chēng)為史蒂芬森加速(Steffensen’s acceleration).注意,只對(duì)一階方法有效。

lim?n→∞p?pn+1p?pn=A,p≈pn+2pn?pn+12pn+2?2pn+1+pn=qn\lim _{n \rightarrow \infty} \frac{p-p_{n+1}}{p-p_{n}}=A, \quad p \approx \frac{p_{n+2} p_{n}-p_{n+1}^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}=q_{n}nlim?p?pn?p?pn+1??=A,ppn+2??2pn+1?+pn?pn+2?pn??pn+12??=qn?

3.6 Muller方法(Muller’s method)

在這里插入圖片描述
給定三個(gè)初始值(p0,f(p0)),(p1,f(p1)),(p2,f(p2))\left(p_{0}, f\left(p_{0}\right)\right),\left(p_{1}, f\left(p_{1}\right)\right),\left(p_{2},f\left(p_{2}\right)\right)(p0?,f(p0?)),(p1?,f(p1?)),(p2?,f(p2?))


t=x?p2h0=p0?p2,h1=p1?p2\begin{aligned} &t=x-p_{2} \\ &h_{0}=p_{0}-p_{2}, h_{1}=p_{1}-p_{2} \\ \end{aligned}?t=x?p2?h0?=p0??p2?,h1?=p1??p2??

我們使用二次函數(shù)計(jì)算下一個(gè)點(diǎn):

y=at2+bt+cy=a t^{2}+b t+cy=at2+bt+c

則有:

t=h0:ah02+bh0+c=f0?ah02+bh0=f0?c=e0t=h1:ah12+bh1+c=f1?ah12+bh1=f1?c=e1t=0:a02+b0+c=f2?c=f2\begin{aligned} t=h_{0}: a h_{0}^{2}+b h_{0}+c=f_{0} &\Rightarrow a h_{0}^{2}+b h_{0}=f_{0}-c=e_{0} \\ t=h_{1}: a h_{1}^{2}+b h_{1}+c=f_{1} &\Rightarrow a h_{1}^{2}+b h_{1}=f_{1}-c=e_{1} \\ t=0: a 0^{2}+b 0+c=f_{2}& \Rightarrow c=f_{2} \end{aligned}t=h0?:ah02?+bh0?+c=f0?t=h1?:ah12?+bh1?+c=f1?t=0:a02+b0+c=f2???ah02?+bh0?=f0??c=e0??ah12?+bh1?=f1??c=e1??c=f2??

解得:

a=e0h1?e1h0h1h02?h0h12,b=e1h02?e0h12h1h02?h0h12a=\frac{e_{0} h_{1}-e_{1} h_{0}}{h_{1} h_{0}^{2}-h_{0} h_{1}^{2}}, \quad b=\frac{e_{1} h_{0}^{2}-e_{0} h_{1}^{2}}{h_{1} h_{0}^{2}-h_{0} h_{1}^{2}}a=h1?h02??h0?h12?e0?h1??e1?h0??,b=h1?h02??h0?h12?e1?h02??e0?h12??

于是得到:

at2+bt+c=0:t=z1,z2?zi=?2cb±b2?4acz=arg?min?{∣zi∣}【對(duì)于一個(gè)復(fù)數(shù),在計(jì)算中只保留其實(shí)數(shù)部分】\begin{aligned} &a t^{2}+b t+c=0: \quad t=z_{1}, z_{2} \Rightarrow z_{i}=\frac{-2 c}{b \pm \sqrt{b^{2}-4 a c}} \\ &z=\arg \min \left\{\left|z_{i}\right|\right\}【\text{對(duì)于一個(gè)復(fù)數(shù),在計(jì)算中只保留其實(shí)數(shù)部分}】 \end{aligned}?at2+bt+c=0:t=z1?,z2??zi?=b±b2?4ac??2c?z=argmin{zi?}對(duì)于一個(gè)復(fù)數(shù),在計(jì)算中只保留其實(shí)數(shù)部分?

p3=p2+zp_{3}=p_{2}+zp3?=p2?+z

繼續(xù)得到(pˉ1,pˉ2,p3)\left(\bar{p}_{1}, \bar{p}_{2}, p_{3}\right)(pˉ?1?,pˉ?2?,p3?),其中pˉ1,pˉ2\bar{p}_{1}, \bar{p}_{2}pˉ?1?,pˉ?2?是距離p3p_3p3?最近的兩個(gè)點(diǎn)。

4. 其他問(wèn)題

4.1 如何尋找初值

例如
在這里插入圖片描述
可以有兩個(gè)判斷條件:

  1. 【針對(duì)r1r_1r1?r2r_2r2?
    f(xk?1)f(xk)<0[a,b]=[xk?1,xk]f\left(x_{k-1}\right) f\left(x_{k}\right)<0 \quad[{a}, ]=\left[{x}_{{k}-1}, {x}_{{k}}\right]f(xk?1?)f(xk?)<0[a,b]=[xk?1?,xk?]

  2. 【針對(duì)r3r_3r3?
    ∣f(xk)∣<ε并且(f(xk)?f(xk?1))(f(xk+1)?f(xk))<0[a,b]=[xk?1,xk+1]\left|f\left(x_{k}\right)\right|<\varepsilon \text { 并且}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) \left(f\left(x_{k+1}\right)-f\left(x_{k}\right)\right)<0\quad [{a}, ]=\left[{x}_{{k}-1}, {x}_{{k}+1}\right]f(xk?)<ε?并且(f(xk?)?f(xk?1?))(f(xk+1?)?f(xk?))<0[a,b]=[xk?1?,xk+1?]

4.2 收斂條件

可以有兩個(gè)收斂條件:

1. 根據(jù)縱坐標(biāo)
∣f(xk)∣<ε\left|f\left(x_{k}\right)\right|<\varepsilonf(xk?)<ε

在這里插入圖片描述

誤差為:Errorx=∣xk?r∣\text{Error}_{x}=\left|x_{k}-r\right|Errorx?=xk??r

2. 根據(jù)橫坐標(biāo)

∣xk?xk?1∣<δ\left|x_{k}-x_{k-1}\right|<\deltaxk??xk?1?<δ

由以下推出:

∣xk?r∣<δ?∣xk?xk?1∣<δ\left|x_{k}-r\right|<\delta \Rightarrow\left|x_{k}-x_{k-1}\right|<\deltaxk??r<δ?xk??xk?1?<δ

在這里插入圖片描述
誤差為:Error?f=max?{∣f(r?δ)∣,∣f(r+δ)∣}\text { Error }_{f}=\max \{|f(r-\delta)|,|f(r+\delta)|\}?Error?f?=max{f(r?δ),f(r+δ)}

3. 我們也可以把上面兩個(gè)進(jìn)行組合:

∣f(xk)∣<ε并且∣xk?r∣<δ\left|f\left(x_{k}\right)\right|<\varepsilon \text{并且}\left|x_{k}-r\right|<\deltaf(xk?)<ε并且xk??r<δ

在這里插入圖片描述

  1. 如果針對(duì)Newton-Raphson問(wèn)題,我們還可以有如下的判斷標(biāo)準(zhǔn):

f′(r)≠0f^{\prime}(r) \neq 0f(r)=0
x0∈[r?δ,r+δ]x_{0} \in[r-\delta, r+\delta]x0?[r?δ,r+δ], δ\deltaδ足夠小。

4.3 算法的收斂速度對(duì)比

在這里插入圖片描述

4.4 算法的選擇

單根:
Newton-Raphson方法

雙根(當(dāng)分母為0失效):
Newton-Raphson方法
Steffensen’s method

http://www.risenshineclean.com/news/38563.html

相關(guān)文章:

  • 網(wǎng)站建設(shè)品牌好app拉新推廣平臺(tái)
  • 手機(jī)訪問(wèn)asp網(wǎng)站福州百度代理
  • 做網(wǎng)站什么前端框架方便b2b和b2c是什么意思
  • 贛州 做網(wǎng)站seo優(yōu)化總結(jié)
  • 做網(wǎng)站的詐騙公司360搜索引擎下載
  • 設(shè)計(jì)風(fēng)格網(wǎng)站欣賞怎么創(chuàng)建網(wǎng)站快捷方式到桌面
  • 網(wǎng)站建設(shè)優(yōu)化服務(wù)信息谷歌seo優(yōu)化公司
  • 網(wǎng)站開(kāi)發(fā)項(xiàng)目組團(tuán)隊(duì)蘇州百度 seo
  • wordpress帶用戶(hù)丁的老頭seo博客
  • 煙臺(tái)網(wǎng)站制作開(kāi)發(fā)抖音關(guān)鍵詞排名查詢(xún)工具
  • 外貿(mào)工廠 網(wǎng)站建設(shè)國(guó)內(nèi)免費(fèi)域名注冊(cè)
  • 不同類(lèi)型網(wǎng)站比較及網(wǎng)站域名設(shè)計(jì)新聞?lì)^條今日新聞
  • 怎么建設(shè)淘寶聯(lián)盟的網(wǎng)站百度搜索引擎的原理
  • 陜西省高速建設(shè)集團(tuán)公司網(wǎng)站全國(guó)免費(fèi)發(fā)布信息平臺(tái)
  • 動(dòng)態(tài)網(wǎng)站開(kāi)發(fā) 機(jī)械5118
  • 南京網(wǎng)站設(shè)計(jì)我選柚米科技指數(shù)分布的期望和方差
  • 做營(yíng)銷(xiāo)型網(wǎng)站多少錢(qián)百度關(guān)鍵詞優(yōu)化詞精靈
  • 專(zhuān)門(mén)做批發(fā)的網(wǎng)站seo網(wǎng)絡(luò)推廣經(jīng)理招聘
  • 企業(yè)網(wǎng)站建立制作個(gè)人免費(fèi)網(wǎng)站建設(shè)
  • php網(wǎng)站制作 青島外貿(mào)seo軟件
  • 配置 tomcat 做網(wǎng)站做搜索引擎優(yōu)化的企業(yè)
  • 12個(gè)優(yōu)秀平面設(shè)計(jì)素材網(wǎng)站南京seo整站優(yōu)化技術(shù)
  • 做網(wǎng)站廣告收入會(huì)員卡營(yíng)銷(xiāo)策劃方案
  • 做視頻找空鏡頭那個(gè)網(wǎng)站比較全seo優(yōu)化有百度系和什么
  • 電子商務(wù)網(wǎng)站建設(shè)的技術(shù)綜述論文優(yōu)化排名 生客seo
  • 安卓開(kāi)發(fā)培訓(xùn)北京百度推廣優(yōu)化
  • 做封面的地圖網(wǎng)站app推廣是什么意思
  • 微信知彼網(wǎng)絡(luò)網(wǎng)站建設(shè)電商網(wǎng)站開(kāi)發(fā)平臺(tái)
  • 深圳市寶安區(qū)怎么樣seo網(wǎng)站推廣的主要目的是什么
  • 鄭州鞏義網(wǎng)站建設(shè)全國(guó)人大常委會(huì)委員長(zhǎng)