網(wǎng)站設(shè)置銀聯(lián)密碼百度商家入駐
文章目錄
- CH3-8 證明旋轉(zhuǎn)后的四元數(shù)虛部為零,實(shí)部為羅德里格斯公式結(jié)果
- CH4 李群與李代數(shù)
- CH4-1 SO(3) 上的指數(shù)映射
- CH4-2 SE(3) 上的指數(shù)映射
- CH4-3 李代數(shù)求導(dǎo)
- 對(duì)極幾何:本質(zhì)矩陣奇異值分解
- 矩陣內(nèi)積和跡
CH3-8 證明旋轉(zhuǎn)后的四元數(shù)虛部為零,實(shí)部為羅德里格斯公式結(jié)果
前面已經(jīng)推導(dǎo)過(guò)
v ′ = p v p ? = p v p ? 1 v'=pvp^*=pvp^{-1} v′=pvp?=pvp?1
其中, v = [ 0 , v ? ] v=[0,\vec{v}] v=[0,v], p = [ cos ? θ 2 , sin ? θ 2 u ? ] p=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{u}] p=[cos2θ?,sin2θ?u],代入上式
v ′ = p v p ? = [ cos ? θ 2 , sin ? θ 2 u ? ] [ 0 , v ? ] [ cos ? θ 2 , ? sin ? θ 2 u ? ] = [ 0 ? sin ? θ 2 u ? ? v ? , cos ? θ 2 v ? + 0 + sin ? θ 2 u ? × v ? ] [ cos ? θ 2 , ? sin ? θ 2 u ? ] = [ ? sin ? θ 2 u ? ? v ? , cos ? θ 2 v ? + sin ? θ 2 u ? × v ? ] [ cos ? θ 2 , ? sin ? θ 2 u ? ] (3-8-1) \begin{aligned} v'&=pvp^* \\ &=[\cos\frac{\theta}{2},\sin\frac{\theta}{2}\vec{u}][0,\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &=[0-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}+0+\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \\ &=[-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v},\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v}][\cos\frac{\theta}{2},-\sin\frac{\theta}{2}\vec{u}] \end{aligned} \tag{3-8-1} v′?=pvp?=[cos2θ?,sin2θ?u][0,v][cos2θ?,?sin2θ?u]=[0?sin2θ?u?v,cos2θ?v+0+sin2θ?u×v][cos2θ?,?sin2θ?u]=[?sin2θ?u?v,cos2θ?v+sin2θ?u×v][cos2θ?,?sin2θ?u]?(3-8-1)
分別計(jì)算實(shí)部和虛部
R e = ? sin ? θ 2 cos ? θ 2 u ? ? v ? + ( cos ? θ 2 v ? + sin ? θ 2 u ? × v ? ) ? sin ? θ 2 u ? = ? sin ? θ 2 cos ? θ 2 u ? ? v ? + cos ? θ 2 sin ? θ 2 u ? ? v ? + sin ? θ 2 ( u ? × v ? ) ? u ? = 0 + 0 = 0 (3-8-2) \begin{aligned} \mathrm{Re}&=-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cdot\sin\frac{\theta}{2}\vec{u}\\ &=-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\cdot\vec{v}+\cos\frac{\theta}{2}\sin\frac{\theta}{2}\vec{u}\cdot\vec{v}+\sin\frac{\theta}{2}(\vec{u}\times\vec{v})\cdot\vec{u}\\ &=0+0 \\ &=0 \end{aligned} \tag{3-8-2} Re?=?sin2θ?cos2θ?u?v+(cos2θ?v+sin2θ?u×v)?sin2θ?u=?sin2θ?cos2θ?u?v+cos2θ?sin2θ?u?v+sin2θ?(u×v)?u=0+0=0?(3-8-2)
I m = ( ? sin ? θ 2 u ? ? v ? ) ? ( ? sin ? θ 2 u ? ) + ( cos ? θ 2 v ? + sin ? θ 2 u ? × v ? ) cos ? θ 2 + ( cos ? θ 2 v ? + sin ? θ 2 u ? × v ? ) × ( ? sin ? θ 2 u ? ) (3-8-3) \begin{aligned} \mathrm{Im}&=(-\sin\frac{\theta}{2}\vec{u}\cdot\vec{v})\cdot(-\sin\frac{\theta}{2}\vec{u})+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\cos\frac{\theta}{2} \\ &+(\cos\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\vec{u}\times\vec{v})\times(-\sin\frac{\theta}{2}\vec{u}) \end{aligned} \tag{3-8-3} Im?=(?sin2θ?u?v)?(?sin2θ?u)+(cos2θ?v+sin2θ?u×v)cos2θ?+(cos2θ?v+sin2θ?u×v)×(?sin2θ?u)?(3-8-3)
我們希望將其寫(xiě)成矩陣乘法形式。
先證明公式: a ? × ( b ? × c ? ) = ( a ? ? c ? ) ? b ? ? ( a ? ? b ? ) ? c ? \vec{a}\times(\vec\times\vec{c})=(\vec{a}\cdot\vec{c})\cdot\vec-(\vec{a}\cdot\vec)\cdot\vec{c} a×(b×c)=(a?c)?b?(a?b)?c。
證明:
a ? × b ? = a ∧ b = [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] [ b 1 b 2 b 3 ] = △ T a b (3-8-4) \begin{aligned} \vec{a}\times\vec&=\boldsymbol{a}^{\wedge}\boldsymbol \\ &=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right]\stackrel{\bigtriangleup}=\boldsymbol{T}_a\boldsymbol \end{aligned} \tag{3-8-4} a×b?=a∧b= ?0a3??a2???a3?0a1??a2??a1?0? ? ?b1?b2?b3?? ?=△Ta?b?(3-8-4)
那么(矩陣乘法滿(mǎn)足結(jié)合律)
a ? × ( b ? × c ? ) = ( T a T b ) c = T a T b c \vec{a}\times(\vec\times\vec{c})=(\boldsymbol{T}_a\boldsymbol{T}_b)\boldsymbol{c}=\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c} a×(b×c)=(Ta?Tb?)c=Ta?Tb?c
而
T a T b = [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] [ 0 ? b 3 b 2 b 3 0 ? b 1 ? b 2 b 1 0 ] = [ ? a 3 b 3 ? a 2 b 2 a 2 b 1 a 3 b 1 a 1 b 2 ? a 3 b 3 ? a 1 b 1 a 3 b 2 a 1 b 3 a 2 b 3 ? a 2 b 2 ? a 1 b 1 ] = ? ( a ? ? b ? ) I + b a T \begin{aligned} \boldsymbol{T}_a\boldsymbol{T}_b&=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3b_3-a_2b_2 & a_2b_1 & a_3b_1 \\ a_1b_2 & -a_3b_3-a_1b_1 & a_3b_2 \\ a_1b_3 & a_2b_3 & -a_2b_2 -a_1b_1 \end{array}\right]\\ &=-(\vec{a}\cdot\vec)\boldsymbol{I}+\boldsymbol\boldsymbol{a}^{\mathrm{T}} \end{aligned} Ta?Tb??= ?0a3??a2???a3?0a1??a2??a1?0? ? ?0b3??b2???b3?0b1??b2??b1?0? ?= ??a3?b3??a2?b2?a1?b2?a1?b3??a2?b1??a3?b3??a1?b1?a2?b3??a3?b1?a3?b2??a2?b2??a1?b1?? ?=?(a?b)I+baT?
則(用到了矩陣結(jié)合律)
a ? × ( b ? × c ? ) = T a T b c = ( ? ( a ? ? b ? ) I + b a T ) c = ? ( a ? ? b ? ) c + b ( a T c ) = ? ( a ? ? b ? ) c + ( a ? ? c ? ) b (3-8-5) \begin{aligned} \vec{a}\times(\vec\times\vec{c})=\boldsymbol{T}_a\boldsymbol{T}_b\boldsymbol{c}&=(-(\vec{a}\cdot\vec)\boldsymbol{I}+\boldsymbol\boldsymbol{a}^{\mathrm{T}})\boldsymbol{c} \\ &=-(\vec{a}\cdot\vec)\boldsymbol{c}+\boldsymbol(\boldsymbol{a}^{\mathrm{T}}\boldsymbol{c}) \\ &=-(\vec{a}\cdot\vec)\boldsymbol{c}+(\vec{a}\cdot\vec{c})\boldsymbol \end{aligned} \tag{3-8-5} a×(b×c)=Ta?Tb?c?=(?(a?b)I+baT)c=?(a?b)c+b(aTc)=?(a?b)c+(a?c)b?(3-8-5)
同理可證
( a ? × b ? ) × c ? = ( a ? ? c ? ) b ? ( b ? ? c ? ) a (3-8-6) (\vec{a}\times\vec)\times\vec{c}=(\vec{a}\cdot\vec{c})\boldsymbol-(\vec\cdot\vec{c})\boldsymbol{a} \tag{3-8-6} (a×b)×c=(a?c)b?(b?c)a(3-8-6)
證畢。
下面繼續(xù)推導(dǎo)式(3-8-3)
I m = sin ? 2 θ 2 u ? ? v ? ? u ? + cos ? 2 θ 2 v ? + sin ? θ 2 cos ? θ 2 u ? × v ? ? sin ? θ 2 cos ? θ 2 v ? × u ? ? sin ? 2 θ 2 u ? × v ? × u ? = sin ? 2 θ 2 ( u ? ? v ? ) ? u ? + cos ? 2 θ 2 v ? + sin ? θ u ? × v ? ? sin ? 2 θ 2 [ ( u ? ? u ? ) v ? ( v ? ? u ? ) u ] = sin ? 2 θ 2 ( u ? ? v ? ) ? u  ̄ + cos ? 2 θ 2 v + sin ? θ u ? × v ? ? sin ? 2 θ 2 v + sin ? 2 θ 2 ( v ? ? u ? ) u  ̄ = cos ? θ v + 2 sin ? 2 θ 2 ( v ? ? u ? ) u + sin ? θ u ? × v ? = cos ? θ v + ( 1 ? cos ? θ ) ( v ? ? u ? ) u + sin ? θ u ? × v ? (3-8-7) \begin{aligned} \mathrm{Im}&=\sin^2\frac{\theta}{2}\vec{u}\cdot\vec{v}\cdot\vec{u}+\cos^2\frac{\theta}{2}\vec{v}+\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{u}\times\vec{v}-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\vec{v}\times\vec{u}-\sin^2\frac{\theta}{2}\vec{u}\times\vec{v}\times\vec{u} \\ &=\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\vec{u}+\cos^2\frac{\theta}{2}\vec{v}+\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}[(\vec{u}\cdot\vec{u})\boldsymbol{v}-(\vec{v}\cdot\vec{u})\boldsymbol{u}] \\ &=\underline{\sin^2\frac{\theta}{2}(\vec{u}\cdot\vec{v})\cdot\boldsymbol{u}}+\cos^2\frac{\theta}{2}\boldsymbol{v}+\sin\theta\vec{u}\times\vec{v}-\sin^2\frac{\theta}{2}\boldsymbol{v}+\underline{\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}} \\ &=\cos\theta\boldsymbol{v}+2\sin^2\frac{\theta}{2}(\vec{v}\cdot\vec{u})\boldsymbol{u}+\sin\theta\vec{u}\times\vec{v} \\ &=\cos\theta\boldsymbol{v}+(1-\cos\theta)(\vec{v}\cdot\vec{u})\boldsymbol{u}+\sin\theta\vec{u}\times\vec{v} \end{aligned} \tag{3-8-7} Im?=sin22θ?u?v?u+cos22θ?v+sin2θ?cos2θ?u×v?sin2θ?cos2θ?v×u?sin22θ?u×v×u=sin22θ?(u?v)?u+cos22θ?v+sinθu×v?sin22θ?[(u?u)v?(v?u)u]=sin22θ?(u?v)?u?+cos22θ?v+sinθu×v?sin22θ?v+sin22θ?(v?u)u?=cosθv+2sin22θ?(v?u)u+sinθu×v=cosθv+(1?cosθ)(v?u)u+sinθu×v?(3-8-7)
注意: u ? \vec{u} u 是單位向量,故 u ? ? u ? = 1 \vec{u}\cdot\vec{u}=1 u?u=1。
也就是拉格朗日公式結(jié)果。證畢。
CH4 李群與李代數(shù)
CH4-1 SO(3) 上的指數(shù)映射
將指數(shù)函數(shù) e x e^x ex 在 x = 0 x=0 x=0 處泰勒展開(kāi),即
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + . . . + 1 n ! x n = ∑ n = 0 ∞ x n n ! (4-1-1) \begin{aligned} e^x &= 1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...+\frac{1}{n!}x^n \\ &=\sum_{n=0}^{\infty}\frac{x^n}{n!} \end{aligned} \tag{4-1-1} ex?=1+x+2!1?x2+3!1?x3+...+n!1?xn=n=0∑∞?n!xn??(4-1-1)
將矩陣 A \boldsymbol{A} A 代入上式, 則
e A = ∑ n = 0 ∞ A n n ! e^{\boldsymbol{A}}=\sum_{n=0}^{\infty}\frac{\boldsymbol{A}^n}{n!} eA=n=0∑∞?n!An?
同樣的,也有
e ? ∧ = ∑ n = 0 ∞ ( ? ∧ ) n n ! (4-1-2) e^{\boldsymbol{\phi}^{\wedge}}=\sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} \tag{4-1-2} e?∧=n=0∑∞?n!(?∧)n?(4-1-2)
令 ? = θ a \boldsymbol{\phi}=\theta\boldsymbol{a} ?=θa, θ \theta θ為模長(zhǎng), a \boldsymbol{a} a 為單位方向向量。則上式可寫(xiě)為
e ( θ a ) ∧ = ∑ n = 0 ∞ ( θ a ∧ ) n n ! e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}=\sum_{n=0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} e(θa)∧=n=0∑∞?n!(θa∧)n?
我們知道
a ∧ = [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] \boldsymbol{a}^{\wedge}=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] a∧= ?0a3??a2???a3?0a1??a2??a1?0? ?
則
a ∧ a ∧ = [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] = [ ? a 3 2 ? a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 ? a 3 2 ? a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 ? a 2 2 ? a 1 2 ] (4-1-3) \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&=\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \end{aligned} \tag{4-1-3} a∧a∧?= ?0a3??a2???a3?0a1??a2??a1?0? ? ?0a3??a2???a3?0a1??a2??a1?0? ?= ??a32??a22?a1?a2?a1?a3??a1?a2??a32??a12?a2?a3??a1?a3?a2?a3??a22??a12?? ??(4-1-3)
因?yàn)? a \boldsymbol{a} a 是單位向量,則有 a 1 2 + a 2 2 + a 3 2 = 1 a_1^2+a_2^2+a_3^2=1 a12?+a22?+a32?=1,可得
a a T ? I = [ a 1 a 2 a 3 ] [ a 1 a 2 a 3 ] = [ a 1 2 a 1 a 2 a 1 a 3 a 2 a 1 a 2 2 a 2 a 3 a 1 a 3 a 2 a 3 a 3 2 ] ? [ 1 0 0 0 1 0 0 0 1 ] = [ ? a 3 2 ? a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 ? a 3 2 ? a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 ? a 2 2 ? a 1 2 ] = a ∧ a ∧ (4-1-4) \begin{aligned} \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}=\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]\left[\begin{array}{ccc} a_1 & a_2 & a_3 \end{array}\right] &=\left[\begin{array}{c} a_1^2 & a_1a_2 & a_1a_3 \\ a_2a_1 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{array}\right]- \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ &=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right] \\ &=\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} \end{aligned} \tag{4-1-4} aaT?I= ?a1?a2?a3?? ?[a1??a2??a3??]?= ?a12?a2?a1?a1?a3??a1?a2?a22?a2?a3??a1?a3?a2?a3?a32?? ?? ?100?010?001? ?= ??a32??a22?a1?a2?a1?a3??a1?a2??a32??a12?a2?a3??a1?a3?a2?a3??a22??a12?? ?=a∧a∧?(4-1-4)
a ∧ a ∧ a ∧ = [ ? a 3 2 ? a 2 2 a 1 a 2 a 1 a 3 a 1 a 2 ? a 3 2 ? a 1 2 a 2 a 3 a 1 a 3 a 2 a 3 ? a 2 2 ? a 1 2 ] [ 0 ? a 3 a 2 a 3 0 ? a 1 ? a 2 a 1 0 ] = [ 0 a 2 2 a 3 + a 3 3 + a 1 2 a 3 ? a 2 3 ? a 2 a 3 2 ? a 1 a 2 2 ? a 1 2 a 3 ? a 3 3 ? a 1 2 a 3 0 a 1 a 2 2 + a 1 3 + a 1 a 3 2 a 2 a 3 2 + a 1 2 a 2 + a 2 3 ? a 1 a 3 2 ? a 1 3 ? a 1 a 2 2 0 ] \begin{aligned} \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}&=\left[\begin{array}{c} -a_3^2-a_2^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & -a_3^2-a_1^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & -a_2^2-a_1^2 \end{array}\right]\left[\begin{array}{c} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}\right] \\ &=\left[\begin{array}{c} 0 & a_2^2a_3+a_3^3+a_1^2a_3 & -a_2^3-a_2a_3^2-a_1a_2^2 \\ -a_1^2a_3-a_3^3-a_1^2a_3 & 0 & a_1a_2^2+a_1^3+a_1a_3^2 \\ a_2a_3^2+a_1^2a_2+a_2^3 & -a_1a_3^2-a_1^3-a_1a_2^2 & 0 \end{array}\right] \\ \end{aligned} a∧a∧a∧?= ??a32??a22?a1?a2?a1?a3??a1?a2??a32??a12?a2?a3??a1?a3?a2?a3??a22??a12?? ? ?0a3??a2???a3?0a1??a2??a1?0? ?= ?0?a12?a3??a33??a12?a3?a2?a32?+a12?a2?+a23??a22?a3?+a33?+a12?a3?0?a1?a32??a13??a1?a22???a23??a2?a32??a1?a22?a1?a22?+a13?+a1?a32?0? ??
又 a 1 2 + a 2 2 + a 3 2 = 1 a_1^2+a_2^2+a_3^2=1 a12?+a22?+a32?=1,上式寫(xiě)為
a ∧ a ∧ a ∧ = [ 0 a 3 ? a 2 ? a 3 0 a 1 a 2 ? a 1 0 ] = ? a ∧ (4-1-5) \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}=\left[\begin{array}{c} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{array}\right]=-\boldsymbol{a}^{\wedge} \tag{4-1-5} a∧a∧a∧= ?0?a3?a2??a3?0?a1???a2?a1?0? ?=?a∧(4-1-5)
對(duì)式(4-1-2)
e ? ∧ = e ( θ a ) ∧ = ∑ n = 0 ∞ ( θ a ∧ ) n n ! = I + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ + 1 3 ! θ 3 a ∧ a ∧ a ∧ + 1 4 ! θ 4 a ∧ a ∧ a ∧ a ∧ + . . . = ( a a T ? a ∧ a ∧ ) + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ ? 1 3 ! θ 3 a ∧ ? 1 4 ! θ 4 a ∧ a ∧ + . . . = a a T + ( θ ? 1 3 ! θ 3 + 1 5 ! θ 5 + . . . ) a ∧ + ( ? 1 + 1 2 ! θ 2 ? 1 4 ! θ 4 + . . . ) a ∧ a ∧ = ( a ∧ a ∧ + I ) + sin ? θ a ∧ ? cos ? θ ( a ∧ a ∧ ) = ( 1 ? cos ? θ ) a ∧ a ∧ + I + sin ? θ a ∧ = ( 1 ? cos ? θ ) ( a a T ? I ) + I + sin ? θ a ∧ = a a T ? I ? cos ? θ a a T + cos ? θ I + I + sin ? θ a ∧ = cos ? θ I + ( 1 ? cos ? θ ) a a T + sin ? θ a ∧ \begin{aligned} e^{\boldsymbol{\phi}^{\wedge}}=e^{\boldsymbol({\theta\boldsymbol{a}})^{\wedge}}&=\sum_{n=0}^{\infty}\frac{(\theta\boldsymbol{a}^{\wedge})^n}{n!} \\ &=\boldsymbol{I}+\theta\boldsymbol{a}^{\wedge}+\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+...\\ &=(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})+\theta\boldsymbol{a}^{\wedge}+\frac{1}{2!}\theta^2 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}-\frac{1}{3!}\theta^3 \boldsymbol{a}^{\wedge}-\frac{1}{4!}\theta^4 \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+...\\ &=\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+(\theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5+...)\boldsymbol{a}^{\wedge}+(-1+\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4+...)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\\ &=(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\boldsymbol{I})+\sin\theta \boldsymbol{a}^{\wedge}-\cos\theta(\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge})\\ &=(1-\cos\theta)\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge} \\ &=(1-\cos\theta)(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge}\\ &=\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}-\cos\theta\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\cos\theta\boldsymbol{I}+\boldsymbol{I}+\sin\theta \boldsymbol{a}^{\wedge}\\ &=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\sin\theta \boldsymbol{a}^{\wedge} \end{aligned} e?∧=e(θa)∧?=n=0∑∞?n!(θa∧)n?=I+θa∧+2!1?θ2a∧a∧+3!1?θ3a∧a∧a∧+4!1?θ4a∧a∧a∧a∧+...=(aaT?a∧a∧)+θa∧+2!1?θ2a∧a∧?3!1?θ3a∧?4!1?θ4a∧a∧+...=aaT+(θ?3!1?θ3+5!1?θ5+...)a∧+(?1+2!1?θ2?4!1?θ4+...)a∧a∧=(a∧a∧+I)+sinθa∧?cosθ(a∧a∧)=(1?cosθ)a∧a∧+I+sinθa∧=(1?cosθ)(aaT?I)+I+sinθa∧=aaT?I?cosθaaT+cosθI+I+sinθa∧=cosθI+(1?cosθ)aaT+sinθa∧?
于是得到李代數(shù) ? \boldsymbol{\phi} ? 和旋轉(zhuǎn)矩陣 R \boldsymbol{R} R 之間的映射關(guān)系,即
R = e ? ∧ = cos ? θ I + ( 1 ? cos ? θ ) a a T + sin ? θ a ∧ (4-1-6) \boldsymbol{R}=e^{\boldsymbol{\phi}^{\wedge}}=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\sin\theta \boldsymbol{a}^{\wedge} \tag{4-1-6} R=e?∧=cosθI+(1?cosθ)aaT+sinθa∧(4-1-6)
也就是 羅德里格斯公式。
CH4-2 SE(3) 上的指數(shù)映射
已知李代數(shù) ξ = [ ρ ? ] T ∈ R 6 \boldsymbol{\xi}=[\rho \quad \phi]^{\mathrm{T}}\in \boldsymbol{\mathbb{R}}^6 ξ=[ρ?]T∈R6,它的反對(duì)稱(chēng)矩陣為
ξ ∧ = [ ? ∧ ρ 0 T 0 ] \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] ξ∧=[?∧0T?ρ0?]
則李群為
T = exp ? ( ξ ∧ ) = [ ∑ n = 0 ∞ ( ? ∧ ) n n ! ∑ n = 0 ∞ ( ? ∧ ) n ( n + 1 ) ! ρ 0 T 0 ] ? [ R J ρ 0 T 1 ] (4-2-1) \begin{aligned} \boldsymbol{T}=\exp(\boldsymbol{\xi}^{\wedge})&=\left[\begin{array}{c} \sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{n!} & \sum_{n=0}^{\infty}\frac{(\boldsymbol{\phi}^{\wedge})^n}{(n+1)!}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \\ &\triangleq \left[\begin{array}{c} \boldsymbol{R} & \boldsymbol{J}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \end{aligned} \tag{4-2-1} T=exp(ξ∧)?=[∑n=0∞?n!(?∧)n?0T?∑n=0∞?(n+1)!(?∧)n?ρ0?]?[R0T?Jρ1?]?(4-2-1)
下面開(kāi)始證明
同樣,假設(shè) ? = θ a \boldsymbol{\phi}=\theta\boldsymbol{a} ?=θa, θ \theta θ為模長(zhǎng), a \boldsymbol{a} a為單位方向向量。將 exp ? ( ξ ∧ ) \exp(\boldsymbol{\xi}^{\wedge}) exp(ξ∧) 泰勒展開(kāi)
exp ? ( ξ ∧ ) = 1 n ! ∑ n = 0 ∞ [ ? ∧ ρ 0 T 0 ] n = 1 n ! ∑ n = 0 ∞ [ θ a ∧ ρ 0 T 0 ] n (4-2-2) \exp(\boldsymbol{\xi}^{\wedge})=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \tag{4-2-2} exp(ξ∧)=n!1?n=0∑∞?[?∧0T?ρ0?]n=n!1?n=0∑∞?[θa∧0T?ρ0?]n(4-2-2)
當(dāng) n = 0 n=0 n=0 時(shí),
1 0 ! [ ? ∧ ρ 0 T 0 ] 0 = I \frac{1}{0!}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^0=\boldsymbol{I} 0!1?[?∧0T?ρ0?]0=I
當(dāng) n = 1 n=1 n=1 時(shí),
1 1 ! [ θ a ∧ ρ 0 T 0 ] 1 = [ θ a ∧ ρ 0 T 0 ] \frac{1}{1!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^1=\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 1!1?[θa∧0T?ρ0?]1=[θa∧0T?ρ0?]
當(dāng) n = 2 n=2 n=2 時(shí),
1 2 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] = [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] \frac{1}{2!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]=\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 2!1?[θa∧0T?ρ0?][θa∧0T?ρ0?]=[(θa∧)20T?θa∧ρ0?]
當(dāng) n = 3 n=3 n=3 時(shí),
1 3 ! [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] [ θ a ∧ ρ 0 T 0 ] = 1 3 ! [ ( θ a ∧ ) 3 ( θ a ∧ ) 2 ρ 0 T 0 ] \frac{1}{3!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]=\frac{1}{3!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^3 & (\theta\boldsymbol{a}^{\wedge})^2\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] 3!1?[θa∧0T?ρ0?][θa∧0T?ρ0?][θa∧0T?ρ0?]=3!1?[(θa∧)30T?(θa∧)2ρ0?]
以此類(lèi)推
1 n ! [ θ a ∧ ρ 0 T 0 ] n = 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n ? 1 ρ 0 T 0 ] (4-2-3) \frac{1}{n!}\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n=\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right] \tag{4-2-3} n!1?[θa∧0T?ρ0?]n=n!1?[(θa∧)n0T?(θa∧)n?1ρ0?](4-2-3)
那么,式(4-1-8)可化為
exp ? ( ξ ∧ ) = 1 n ! ∑ n = 0 ∞ [ ? ∧ ρ 0 T 0 ] n = I + [ θ a ∧ ρ 0 T 0 ] + [ ( θ a ∧ ) 2 θ a ∧ ρ 0 T 0 ] + . . . + 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n ? 1 ρ 0 T 0 ] = [ ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n ρ 0 T 1 ] (4-2-4) \begin{aligned} \exp(\boldsymbol{\xi}^{\wedge})&=\frac{1}{n!}\sum_{n=0}^{\infty}\left[\begin{array}{c} \phi^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]^n \\ &=\boldsymbol{I}+\left[\begin{array}{c} \theta\boldsymbol{a}^{\wedge} & \rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]+\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^2 & \theta\boldsymbol{a}^{\wedge}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]+...+\frac{1}{n!}\left[\begin{array}{c} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1}\rho \\ \boldsymbol{0}^{\mathrm{T}} & 0 \end{array}\right]\\ &=\left[\begin{array}{c} \sum_{n=0}^{\infty}\frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^n & \sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\theta\boldsymbol{a}^{\wedge})^n\rho \\ \boldsymbol{0}^{\mathrm{T}} & 1 \end{array}\right] \tag{4-2-4} \end{aligned} exp(ξ∧)?=n!1?n=0∑∞?[?∧0T?ρ0?]n=I+[θa∧0T?ρ0?]+[(θa∧)20T?θa∧ρ0?]+...+n!1?[(θa∧)n0T?(θa∧)n?1ρ0?]=[∑n=0∞?n!1?(θa∧)n0T?∑n=0∞?(n+1)!1?(θa∧)nρ1?]?(4-2-4)
其中,左上角為 S O ( 3 ) SO(3) SO(3) 指數(shù)映射,前面已經(jīng)證明。令
J = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n = I + 1 2 ! θ a ∧ + 1 3 ! ( θ a ∧ ) 2 + 1 4 ! ( θ a ∧ ) 3 + 1 5 ! ( θ a ∧ ) 4 = 1 θ ( 1 2 ! θ 2 ? 1 4 ! θ 4 + . . . ) a ∧ + 1 θ ( 1 3 ! θ 3 ? 1 5 ! θ 5 + . . . ) ( a ∧ ) 2 + I = 1 ? cos ? θ θ a ∧ + θ ? sin ? θ θ ( a ∧ ) 2 + I = 1 ? cos ? θ θ a ∧ + ( 1 ? sin ? θ θ ) ( a a T ? I ) + I = 1 ? cos ? θ θ a ∧ + ( 1 ? sin ? θ θ ) a a T ? I + sin ? θ θ I + I = sin ? θ θ I + ( 1 ? sin ? θ θ ) a a T + 1 ? cos ? θ θ a ∧ (4-2-5) \begin{aligned} \boldsymbol{J}&=\sum_{n=0}^{\infty}\frac{1}{(n+1)!}(\theta\boldsymbol{a}^{\wedge})^n \\ &=\boldsymbol{I}+\frac{1}{2!}\theta\boldsymbol{a}^{\wedge}+\frac{1}{3!}(\theta\boldsymbol{a}^{\wedge})^2+\frac{1}{4!}(\theta\boldsymbol{a}^{\wedge})^3+\frac{1}{5!}(\theta\boldsymbol{a}^{\wedge})^4 \\ &=\frac{1}{\theta}(\frac{1}{2!}\theta^2-\frac{1}{4!}\theta^4+...)\boldsymbol{a}^{\wedge}+\frac{1}{\theta}(\frac{1}{3!}\theta^3-\frac{1}{5!}\theta^5+...)(\boldsymbol{a}^{\wedge})^2+\boldsymbol{I} \\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+\frac{\theta-\sin\theta}{\theta}(\boldsymbol{a}^{\wedge})^2+\boldsymbol{I}\\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+(1-\frac{\sin\theta}{\theta})(\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I})+\boldsymbol{I}\\ &=\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge}+(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}+\frac{\sin\theta}{\theta}\boldsymbol{I}+\boldsymbol{I}\\ &=\frac{\sin\theta}{\theta}\boldsymbol{I}+(1-\frac{\sin\theta}{\theta})\boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}+\frac{1-\cos\theta}{\theta}\boldsymbol{a}^{\wedge} \tag{4-2-5} \end{aligned} J?=n=0∑∞?(n+1)!1?(θa∧)n=I+2!1?θa∧+3!1?(θa∧)2+4!1?(θa∧)3+5!1?(θa∧)4=θ1?(2!1?θ2?4!1?θ4+...)a∧+θ1?(3!1?θ3?5!1?θ5+...)(a∧)2+I=θ1?cosθ?a∧+θθ?sinθ?(a∧)2+I=θ1?cosθ?a∧+(1?θsinθ?)(aaT?I)+I=θ1?cosθ?a∧+(1?θsinθ?)aaT?I+θsinθ?I+I=θsinθ?I+(1?θsinθ?)aaT+θ1?cosθ?a∧?(4-2-5)
注意,這里用到式(4-1-5) ( a ∧ ) 3 = ? a ∧ (\boldsymbol{a}^{\wedge})^3=-\boldsymbol{a}^{\wedge} (a∧)3=?a∧ 和 a a T ? I = a ∧ a ∧ \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}}-\boldsymbol{I}=\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} aaT?I=a∧a∧ 以及泰勒展開(kāi)
cos ? θ = 1 ? 1 2 ! θ 2 + 1 4 ! θ 4 + . . . \cos\theta=1-\frac{1}{2!}\theta^2+\frac{1}{4!}\theta^4+... cosθ=1?2!1?θ2+4!1?θ4+...
sin ? θ = θ ? 1 3 ! θ 3 + 1 5 ! θ 5 + . . . \sin\theta=\theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5+... sinθ=θ?3!1?θ3+5!1?θ5+...
綜上,證畢。
CH4-3 李代數(shù)求導(dǎo)
一、(1) S O ( 3 ) \mathrm{SO(3)} SO(3) 直接求導(dǎo)
對(duì)極幾何:本質(zhì)矩陣奇異值分解
矩陣內(nèi)積和跡
矩陣具有 弗羅比尼烏斯內(nèi)積,類(lèi)似向量的內(nèi)積。它被定義為兩個(gè)相同大小的矩陣 A \boldsymbol{A} A 和 B \boldsymbol{B} B 的對(duì)應(yīng)元素的積的和, 即
< A , B > = ∑ i = 1 n ∑ j = 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}b_{ij} <A,B>=i=1∑n?j=1∑n?aij?bij?
以 3 × 3 3\times 3 3×3 矩陣為例,設(shè)
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] , B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] \boldsymbol{A}=\left[\begin{array}{c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right], \boldsymbol{B}=\left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right] A= ?a11?a21?a31??a12?a22?a32??a13?a23?a33?? ?,B= ?b11?b21?b31??b12?b22?b32??b13?b23?b33?? ?
則有
< A , B > = ∑ i = 1 n ∑ j = 1 n a i j b i j <\boldsymbol{A},\boldsymbol{B}>=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}b_{ij} <A,B>=i=1∑n?j=1∑n?aij?bij?
對(duì)于 A T B \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B} ATB
A T B = [ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ a 11 b 11 + a 21 b 21 + a 31 b 31 ? ? ? a 12 b 12 + a 22 b 22 + a 32 b 32 ? ? ? a 13 b 13 + a 23 b 23 + a 33 b 33 ] \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}=\left[\begin{array}{c} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array}\right] \left[\begin{array}{c} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}\right]= \left[\begin{array}{c} a_{11}b_{11}+a_{21}b_{21}+a_{31}b_{31} & ? & ? \\ ? & a_{12}b_{12}+a_{22}b_{22}+a_{32}b_{32} & ? \\ ? & ? & a_{13}b_{13}+a_{23}b_{23}+a_{33}b_{33} \end{array}\right] ATB= ?a11?a12?a13??a21?a22?a23??a31?a32?a33?? ? ?b11?b21?b31??b12?b22?b32??b13?b23?b33?? ?= ?a11?b11?+a21?b21?+a31?b31?????a12?b12?+a22?b22?+a32?b32?????a13?b13?+a23?b23?+a33?b33?? ?
則 T r ( A T B ) \mathrm{Tr}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}) Tr(ATB)等于
T r ( A T B ) = a 11 b 11 + a 21 b 21 + a 31 b 31 + a 12 b 12 + a 22 b 22 + a 32 b 32 + a 13 b 13 + a 23 b 23 + a 33 b 33 = ∑ i = 1 n ∑ j = 1 n a i j b i j \mathrm{Tr}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{B})=a_{11}b_{11}+a_{21}b_{21}+a_{31}b_{31}+a_{12}b_{12}+a_{22}b_{22}+a_{32}b_{32}+a_{13}b_{13}+a_{23}b_{23}+a_{33}b_{33}=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}b_{ij} Tr(ATB)=a11?b11?+a21?b21?+a31?b31?+a12?b12?+a22?b22?+a32?b32?+a13?b13?+a23?b23?+a33?b33?=i=1∑n?j=1∑n?aij?bij?
也就是說(shuō) A T B \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B} ATB 的跡等于兩矩陣對(duì)應(yīng)元素相乘的積的和。