wordpress自定義樣式什么是seo文章
算法庫(kù)
算法庫(kù)提供大量用途的函數(shù)(例如查找、排序、計(jì)數(shù)、操作),它們?cè)谠胤秶喜僮?。注意范圍定義為?[first, last)
?,其中?last
?指代要查詢或修改的最后元素的后一個(gè)元素。
類似 std::accumulate,但不依序執(zhí)行
std::reduce
template<class InputIt> typename std::iterator_traits<InputIt>::value_type reduce( ? ? InputIt first, InputIt last); | (1) | (C++17 起) |
template<class ExecutionPolicy, class ForwardIt> typename std::iterator_traits<ForwardIt>::value_type reduce( | (2) | (C++17 起) |
template<class InputIt, class T> | (3) | (C++17 起) |
template<class ExecutionPolicy, class ForwardIt, class T> T reduce(ExecutionPolicy&& policy, ? ? ? ? ?ForwardIt first, ForwardIt last, T init); | (4) | (C++17 起) |
template<class InputIt, class T, class BinaryOp> | (5) | (C++17 起) |
template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOp> T reduce(ExecutionPolicy&& policy, ? ? ? ? ?ForwardIt first, ForwardIt last, T init, BinaryOp binary_op); | (6) | (C++17 起) |
1) 同 reduce(first, last, typename std::iterator_traits<InputIt>::value_type{})
3) 同 reduce(first, last, init, std::plus<>())
5) 在 binary_op
上以初值 init
規(guī)約范圍 [first; last) ,可能以未指定方式排序聚合。
2,4,6) 同 (1,3,5) ,但按照 policy
執(zhí)行。此重載僅若std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> 為 true才參與重載決議
若 binary_op
非結(jié)合或非交換,則行為非確定。
若 binary_op
修改 [first; last] 中任何元素或非法化范圍中任何迭代器,含尾迭代器,則行為未定義。
參數(shù)
first, last | - | 要應(yīng)用算法的元素范圍 |
init | - | 廣義和的初值 |
policy | - | 使用的執(zhí)行策略。細(xì)節(jié)見執(zhí)行策略。 |
binary_op | - | 將以未指定順序應(yīng)用于解引用輸入迭代器結(jié)果、其他 binary_op 結(jié)果及 init 上的二元函數(shù)對(duì)象 (FunctionObject) 。 |
類型要求 | ||
- InputIt 必須滿足遺留輸入迭代器 (LegacyInputIterator) 的要求。 | ||
- ForwardIt 必須滿足遺留向前迭代器 (LegacyForwardIterator) 的要求。 | ||
- T 必須滿足可移動(dòng)構(gòu)造 (MoveConstructible) 的要求。而且 binary_op(init, *first) 、 binary_op(*first, init) 、 binary_op(init, init) 及 binary_op(*first, *first) 必須可轉(zhuǎn)換到 T 。 |
返回值
init
及 *first
、 *(first+1)
、…… *(last-1)
在 binary_op
上的廣義和,
其中廣義和 GSUM(op, a
1, ..., a
N) 定義如下:
- 若 N=1 ,則為 a
1 - 若 N > 1 ,則為 op(GSUM(op, b
1, ..., b
K), GSUM(op, b
M, ..., b
N)) ,其中
- b
1, ..., b
N 可以是任何 a1, ..., aN 的排列,且 - 1 < K+1 = M ≤ N
換言之, reduce
表現(xiàn)類似 std::accumulate ,除了范圍中的元素可能以任意順序分組并重排。
復(fù)雜度
O(last - first) 次應(yīng)用 binary_op
.
異常
擁有名為 ExecutionPolicy
的模板形參的重載按下列方式報(bào)告錯(cuò)誤:
- 若作為算法一部分調(diào)用的函數(shù)的執(zhí)行拋出異常,且
ExecutionPolicy
為標(biāo)準(zhǔn)策略之一,則調(diào)用 std::terminate 。對(duì)于任何其他ExecutionPolicy
,行為是實(shí)現(xiàn)定義的。 - 若算法無法分配內(nèi)存,則拋出 std::bad_alloc 。
注意
若為空,則返回不修改的 init
調(diào)用示例
#include <iostream>
#include <string>
#include <iterator>
#include <algorithm>
#include <functional>
#include <time.h>
#include <random>
#include <vector>
#include <cassert>struct Cell
{int x;int y;Cell() = default;Cell(int a, int b): x(a), y(b) {}Cell &operator +=(const Cell &cell){x += cell.x;y += cell.y;return *this;}Cell &operator +(const Cell &cell){x += cell.x;y += cell.y;return *this;}Cell &operator *(const Cell &cell){x *= cell.x;y *= cell.y;return *this;}Cell &operator ++(){x += 1;y += 1;return *this;}bool operator <(const Cell &cell) const{if (x == cell.x){return y < cell.y;}else{return x < cell.x;}}bool operator >(const Cell &cell) const{if (x == cell.x){return y > cell.y;}else{return x > cell.x;}}bool operator ==(const Cell &cell) const{return x == cell.x && y == cell.y;}friend Cell operator+(const Cell &lcell, const Cell &rcell){Cell cell = lcell;cell.x += rcell.x;cell.y += rcell.y;return cell;}friend Cell operator-(const Cell &lcell, const Cell &rcell){Cell cell = lcell;cell.x -= rcell.x;cell.y -= rcell.y;return cell;}friend Cell operator*(const Cell &lcell, const Cell &rcell){Cell cell = lcell;cell.x *= rcell.x;cell.y *= rcell.y;return cell;}friend Cell operator/(const Cell &lcell, const Cell &rcell){Cell cell = lcell;cell.x /= rcell.x;cell.y /= rcell.y;return cell;}friend Cell operator%(const Cell &lcell, const Cell &rcell){Cell cell = lcell;cell.x %= rcell.x;cell.y %= rcell.y;return cell;}
};std::ostream &operator<<(std::ostream &os, const Cell &cell)
{os << "{" << cell.x << "," << cell.y << "}";return os;
}namespace std
{
template <typename InputIt, typename T, typename BinaryOperation>
T reduce(InputIt first, InputIt last, T init, BinaryOperation op)
{for (; first != last; ++first){init = op(std::move(init), *first);}return init;
}
}int main()
{std::cout << std::boolalpha;std::mt19937 g{std::random_device{}()};srand((unsigned)time(NULL));auto generate = [](){int n = std::rand() % 10 + 110;Cell cell{n, n};return cell;};//3) 構(gòu)造擁有 count 個(gè)有值 value 的元素的容器。std::vector<Cell> vector1(8, generate());std::generate(vector1.begin(), vector1.end(), generate);std::sort(vector1.begin(), vector1.end());std::cout << "vector1: ";std::copy(vector1.begin(), vector1.end(), std::ostream_iterator<Cell>(std::cout, " "));std::cout << std::endl;std::vector<Cell> vector2(vector1.size(), generate());std::generate(vector2.begin(), vector2.end(), generate);std::sort(vector2.begin(), vector2.end());std::cout << "vector2: ";std::copy(vector2.begin(), vector2.end(), std::ostream_iterator<Cell>(std::cout, " "));std::cout << std::endl;for (size_t index = 0; index < vector1.size(); ++index){std::cout << "std::reduce(vector1.begin(), " << index << ", Cell{0, 0} std::plus<Cell>() ): ";std::cout << std::reduce(vector1.begin(), vector1.begin() + index, Cell{0, 0}, std::plus<Cell>());std::cout << std::endl;}std::cout << std::endl;for (size_t index = 0; index < vector1.size(); ++index){std::cout << "std::reduce(vector1.begin(), " << index << ", Cell{0, 0} std::minus<Cell>() ): ";std::cout << std::reduce(vector1.begin(), vector1.begin() + index, Cell{0, 0}, std::minus<Cell>());std::cout << std::endl;}std::cout << std::endl;for (size_t index = 0; index < vector2.size(); ++index){std::cout << "std::reduce(vector2.begin(), " << index << ", Cell{1, 1} std::multiplies<Cell>() ): ";std::cout << std::reduce(vector2.begin(), vector2.begin() + index, Cell{1, 1}, std::multiplies<Cell>());std::cout << std::endl;}std::cout << std::endl;for (size_t index = 0; index < vector2.size(); ++index){std::cout << "std::reduce(vector2.begin(), " << index << ", Cell{1024, 1024} std::divides<Cell>() ): ";std::cout << std::reduce(vector2.begin(), vector2.begin() + index, Cell{1024, 1024}, std::divides<Cell>());std::cout << std::endl;}std::cout << std::endl;for (size_t index = 0; index < vector2.size(); ++index){std::cout << "std::reduce(vector2.begin(), " << index << ", Cell{1024, 1024} std::modulus<Cell>() ): ";std::cout << std::reduce(vector2.begin(), vector2.begin() + index, Cell{1024, 1024}, std::modulus<Cell>());std::cout << std::endl;}std::cout << std::endl;return 0;
}
輸出
vector1: {111,111} {112,112} {113,113} {115,115} {116,116} {116,116} {117,117} {119,119}
vector2: {110,110} {112,112} {112,112} {114,114} {117,117} {117,117} {119,119} {119,119}
std::reduce(vector1.begin(), 0, Cell{0, 0} std::plus<Cell>() ): {0,0}
std::reduce(vector1.begin(), 1, Cell{0, 0} std::plus<Cell>() ): {111,111}
std::reduce(vector1.begin(), 2, Cell{0, 0} std::plus<Cell>() ): {223,223}
std::reduce(vector1.begin(), 3, Cell{0, 0} std::plus<Cell>() ): {336,336}
std::reduce(vector1.begin(), 4, Cell{0, 0} std::plus<Cell>() ): {451,451}
std::reduce(vector1.begin(), 5, Cell{0, 0} std::plus<Cell>() ): {567,567}
std::reduce(vector1.begin(), 6, Cell{0, 0} std::plus<Cell>() ): {683,683}
std::reduce(vector1.begin(), 7, Cell{0, 0} std::plus<Cell>() ): {800,800}std::reduce(vector1.begin(), 0, Cell{0, 0} std::minus<Cell>() ): {0,0}
std::reduce(vector1.begin(), 1, Cell{0, 0} std::minus<Cell>() ): {-111,-111}
std::reduce(vector1.begin(), 2, Cell{0, 0} std::minus<Cell>() ): {-223,-223}
std::reduce(vector1.begin(), 3, Cell{0, 0} std::minus<Cell>() ): {-336,-336}
std::reduce(vector1.begin(), 4, Cell{0, 0} std::minus<Cell>() ): {-451,-451}
std::reduce(vector1.begin(), 5, Cell{0, 0} std::minus<Cell>() ): {-567,-567}
std::reduce(vector1.begin(), 6, Cell{0, 0} std::minus<Cell>() ): {-683,-683}
std::reduce(vector1.begin(), 7, Cell{0, 0} std::minus<Cell>() ): {-800,-800}std::reduce(vector2.begin(), 0, Cell{1, 1} std::multiplies<Cell>() ): {1,1}
std::reduce(vector2.begin(), 1, Cell{1, 1} std::multiplies<Cell>() ): {110,110}
std::reduce(vector2.begin(), 2, Cell{1, 1} std::multiplies<Cell>() ): {12320,12320}
std::reduce(vector2.begin(), 3, Cell{1, 1} std::multiplies<Cell>() ): {1379840,1379840}
std::reduce(vector2.begin(), 4, Cell{1, 1} std::multiplies<Cell>() ): {157301760,157301760}
std::reduce(vector2.begin(), 5, Cell{1, 1} std::multiplies<Cell>() ): {1224436736,1224436736}
std::reduce(vector2.begin(), 6, Cell{1, 1} std::multiplies<Cell>() ): {1525177344,1525177344}
std::reduce(vector2.begin(), 7, Cell{1, 1} std::multiplies<Cell>() ): {1107477504,1107477504}std::reduce(vector2.begin(), 0, Cell{1024, 1024} std::divides<Cell>() ): {1024,1024}
std::reduce(vector2.begin(), 1, Cell{1024, 1024} std::divides<Cell>() ): {9,9}
std::reduce(vector2.begin(), 2, Cell{1024, 1024} std::divides<Cell>() ): {0,0}
std::reduce(vector2.begin(), 3, Cell{1024, 1024} std::divides<Cell>() ): {0,0}
std::reduce(vector2.begin(), 4, Cell{1024, 1024} std::divides<Cell>() ): {0,0}
std::reduce(vector2.begin(), 5, Cell{1024, 1024} std::divides<Cell>() ): {0,0}
std::reduce(vector2.begin(), 6, Cell{1024, 1024} std::divides<Cell>() ): {0,0}
std::reduce(vector2.begin(), 7, Cell{1024, 1024} std::divides<Cell>() ): {0,0}std::reduce(vector2.begin(), 0, Cell{1024, 1024} std::modulus<Cell>() ): {1024,1024}
std::reduce(vector2.begin(), 1, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 2, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 3, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 4, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 5, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 6, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}
std::reduce(vector2.begin(), 7, Cell{1024, 1024} std::modulus<Cell>() ): {34,34}