做網(wǎng)站的服務器怎么選網(wǎng)店代運營十大排名
2010年國賽高教杯數(shù)學建模
C題 輸油管的布置
??某油田計劃在鐵路線一側建造兩家煉油廠,同時在鐵路線上增建一個車站,用來運送成品油。由于這種模式具有一定的普遍性,油田設計院希望建立管線建設費用最省的一般數(shù)學模型與方法。
??1. 針對兩煉油廠到鐵路線距離和兩煉油廠間距離的各種不同情形,提出你的設計方案。在方案設計時,若有共用管線,應考慮共用管線費用與非共用管線費用相同或不同的情形。
??2. 設計院目前需對一更為復雜的情形進行具體的設計。兩煉油廠的具體位置由附圖所示,其中A廠位于郊區(qū)(圖中的I區(qū)域),B廠位于城區(qū)(圖中的II區(qū)域),兩個區(qū)域的分界線用圖中的虛線表示。圖中各字母表示的距離(單位:千米)分別為a = 5,b = 8,c = 15,l = 20。
??若所有管線的鋪設費用均為每千米7.2萬元。 鋪設在城區(qū)的管線還需增加拆遷和工程補償?shù)雀郊淤M用,為對此項附加費用進行估計,聘請三家工程咨詢公司(其中公司一具有甲級資質,公司二和公司三具有乙級資質)進行了估算。估算結果如下表所示:
??請為設計院給出管線布置方案及相應的費用。
??3. 在該實際問題中,為進一步節(jié)省費用,可以根據(jù)煉油廠的生產(chǎn)能力,選用相適應的油管。這時的管線鋪設費用將分別降為輸送A廠成品油的每千米5.6萬元,輸送B廠成品油的每千米6.0萬元,共用管線費用為每千米7.2萬元,拆遷等附加費用同上。請給出管線最佳布置方案及相應的費用。
整體求解過程概述(摘要)
??“輸油管的布置”數(shù)學建模的目的是設計最優(yōu)化的路線,建立一條費用最省的輸油管線路,但是不同于普遍的最短路徑問題,該題需要考慮多種情況,例如,城區(qū)和郊區(qū)費用的不同,采用共用管線和非公用管線價格的不同等等。我們基于最短路徑模型,對于題目實際情況進行研究和分析,對三個問題都設計了合適的數(shù)學模型做出了相應的解答和處理。
??問題一:此問只需考慮兩個加油站和鐵路之間位置的關系,根據(jù)位置的不同設計相應的模型,我們基于光的傳播原理,設計了一種改進的最短路徑模型,在不考慮共用管線價格差異的情況下,只考慮如何設計最短的路線,因此只需一個未知變量便可以列出最短路徑函數(shù);在考慮到共用管線價格差異的情況下,則需要建立2個未知變量,如果帶入已知常量,可以解出變量的值。
??問題二:此問給出了兩個加油站的具體位置,并且增加了城區(qū)和郊區(qū)的特殊情況,我們進一步改進數(shù)學模型,將輸油管路線橫跨兩個不同的區(qū)域考慮為光在兩種不同介質中傳播的情況,輸油管在城區(qū)和郊區(qū)的鋪設將不會是直線方式,我們將其考慮為光在不同介質中傳播發(fā)生了折射。在郊區(qū)的路線依然可以采用問題一的改進最短路徑模型,基于該模型,我們只需設計2個變量就可以列出最低費用函數(shù),利用Matlab和VC++ 都可以解出最小值,并且我們經(jīng)過多次驗證和求解,將路徑精度控制到米,費用精度控制到元。
??問題三:該問的解答方法和問題二類似,但是由于A管線、B管線、共用管線三者的價格均不一樣,我們利用問題二中設計的數(shù)學模型,以鐵路為橫坐標,城郊交匯為縱坐標建立坐標軸,增加了一個變量,建立了最低費用函數(shù),并且利用VC++解出了最低費用和路徑坐標。
模型假設:
??1、管道均以直線段鋪設,不考慮地形影響。
??2、不考慮管道的接頭處費用。
??3、不考慮施工之中的意外情況,所有工作均可順利進行。
??4、共用管線的價格如果和非公用管線不一致,則共用管線價格大于任意一條非公用管線價格,小于兩條非公用管線價格之和。
問題分析:
??問題一:要考慮有和沒有共用管線,還要考慮共用管線與非共用管線費用相同和不同兩種情況。同時還要考慮兩個工廠是否在鐵路的同一側,如果兩個工廠在鐵路的同一側那么一定沒有共用管線。 不在鐵路的同一側那么就要考慮有和沒有共用管線這個問題。計算共用管線的長度時,用光學原理,把一個工廠當作光源發(fā)射一束光經(jīng)過一個平面的反射通過另一個工廠,這樣能夠保證路線最短。這個平面與鐵路的距離即為共用管線的長度。同時與這個平面的交點就是兩廠的管線的交點。當共用管線與非共用管線費用不相同時可以通過建立方程組來解答。
??當共用管線與非共用管線費用不相同時要建立方程組來計算其最小費用從而來確定方案的可行性,共用管線與非共用管線長度作為變量來控制總費用,那么我們就可以列出一個方程組,從而在變量的約束條件下可以確定最小費用。
??問題二:把這個問題分兩部分來考慮,即市區(qū)和郊區(qū)分兩個部分,火車站建立在郊區(qū)費用要小得多,郊區(qū)共用管線與非共用管線的費用相同所以可以用最短路徑的方法來考慮,同時又要求費用最小,可以解出最低費用及對應的鋪設線路。
??問題三:通過建立坐標系設兩個點的坐標,同時也是表達管線的長度,然后再與各自的費用之積確定總的費用,從而算出兩點的坐標值。即確定了管線的路線。
模型的建立與求解整體論文縮略圖
全部論文請見下方“ 只會建模 QQ名片” 點擊QQ名片即可
部分程序代碼:
%解方程組
syms x y b l a m n
[x,y]=solve('x/((x^2+(y-a)^2)^(1/2))+(x-l)/(((x-l)^2+(y-b)^2)^(1/2))=0','m*((y-a)/((x^2+(y-a)^2)^(1/2))+(y-b)/(((x-l)^2+(y-b)^2)^(1/2)))+n=0','x,y');
pretty(simple(x))
pretty(simple(y))
%鋪設管路長度
syms m n a b l
x =-1/4/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))*l/(-1/2/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))+a-b)y =a-1/4/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))
d=(x^2+(a-y)^2)^(1/2)+((l-x)^2+(b-y)^2)^(1/2)+y
pretty(simple(d))
syms m n a b l
x=-1/4/(n^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*n^2*a-2*n^2*b-2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))*l/(-1/2/(n^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*n^2*a-2*n^2*b-2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))+a-b)y=a-1/4/(n^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*n^2*a-2*n^2*b-2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))f=(x^2+(a-y)^2)^(1/2)+((l-x)^2+(b-y)^2)^(1/2)+ypretty(simple(f))
%鋪設管路所需費用
syms m n a b l
x =-1/4/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))*l/(-1/2/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))+a-b)y =a-1/4/(-4*m^2+n^2)*(-8*a*m^2+8*b*m^2-2*n^2*b+2*n^2*a+2*(4*m^2*l^2*n^2-l^2*n^4)^(1/2))
e=m*(x^2+(a-y)^2)^(1/2)+m*((l-x)^2+(b-y)^2)^(1/2)+n*y
pretty(simple(e))
syms m a b lx=-1/4/(m^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*m^2*a-2*m^2*b-2*(4*m^2*l^2*m^2-l^2*m^4)^(1/2))*l/(-1/2/(m^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*m^2*a-2*m^2*b-2*(4*m^2*l^2*m^2-l^2*m^4)^(1/2))+a-b)y=a-1/4/(m^2-4*m^2)*(-8*m^2*a+8*m^2*b+2*m^2*a-2*m^2*b-2*(4*m^2*l^2*m^2-l^2*m^4)^(1/2))g=m*(x^2+(a-y)^2)^(1/2)+m*((l-x)^2+(b-y)^2)^(1/2)+n*ypretty(simple(g))
!目標函數(shù)Z最小;
min=7.2*(a+b+c+d)+21.424*d;
x1<15;
a^2=((x1)^2+(y1-5)^2);!a表示AP;
b^2=((x1-15)^2+(y1-y2)^2); !b表示PQ;
c=y1; !c表示CP;
d^2=((15-20)^2+(y2-8)^2); !d表示QB;LINGO9.0運行結果:
Local optimal solution found.Objective value: 282.3143Total solver iterations: 46Variable Value Reduced CostA 6.294130 -0.4507570E-08B 11.02638 0.000000C 1.852935 0.000000D 5.040020 0.2173971E-07X1 5.450877 0.000000Y1 1.852935 0.2237103E-07Y2 7.366124 0.000000Row Slack or Surplus Dual Price1 282.3143 -1.0000002 9.549123 0.0000003 0.000000 -0.57196154 0.000000 -0.32648985 0.000000 -7.2000006 0.000000 -2.839671