怎么制作h5廣州seo推廣服務(wù)
分類預(yù)測(cè) | MATLAB實(shí)現(xiàn)WOA-CNN-BiGRU-Attention數(shù)據(jù)分類預(yù)測(cè)
目錄
- 分類預(yù)測(cè) | MATLAB實(shí)現(xiàn)WOA-CNN-BiGRU-Attention數(shù)據(jù)分類預(yù)測(cè)
- 分類效果
- 基本描述
- 模型描述
- 程序設(shè)計(jì)
- 參考資料
分類效果
基本描述
1.Matlab實(shí)現(xiàn)WOA-CNN-BiGRU-Attention多特征分類預(yù)測(cè),多特征輸入模型,運(yùn)行環(huán)境Matlab2023及以上;
2.通過WOA優(yōu)化算法優(yōu)化學(xué)習(xí)率、卷積核大小、神經(jīng)元個(gè)數(shù),這3個(gè)關(guān)鍵參數(shù),以測(cè)試集精度最高為目標(biāo)函數(shù);
3.多特征輸入單輸出的二分類及多分類模型。程序內(nèi)注釋詳細(xì),直接替換數(shù)據(jù)就可以用;
程序語(yǔ)言為matlab,程序可出分類效果圖,迭代優(yōu)化圖,混淆矩陣圖;精確度、召回率、精確率、F1分?jǐn)?shù)等評(píng)價(jià)指標(biāo)。
4.基于鯨魚優(yōu)化算法(WOA)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)和雙向門控循環(huán)單元網(wǎng)絡(luò)(BiGRU)的數(shù)據(jù)分類預(yù)測(cè)程序。
5.適用領(lǐng)域:
適用于各種數(shù)據(jù)分類場(chǎng)景,如滾動(dòng)軸承故障、變壓器油氣故障、電力系統(tǒng)輸電線路故障區(qū)域、絕緣子、配網(wǎng)、電能質(zhì)量擾動(dòng),等領(lǐng)域的識(shí)別、診斷和分類。
使用便捷:
直接使用EXCEL表格導(dǎo)入數(shù)據(jù),無(wú)需大幅修改程序。內(nèi)部有詳細(xì)注釋,易于理解。
模型描述
CNN 是一種前饋型神經(jīng)網(wǎng)絡(luò),廣泛應(yīng)用于深度學(xué)習(xí)領(lǐng)域,主要由卷積層、池化層和全連接層組成,輸入特征向量可以為多維向量組,采用局部感知和權(quán)值共享的方式。卷積層對(duì)原始數(shù)據(jù)提取特征量,深度挖掘數(shù)據(jù)的內(nèi)在聯(lián)系,池化層能夠降低網(wǎng)絡(luò)復(fù)雜度、減少訓(xùn)練參數(shù),全連接層將處理后的數(shù)據(jù)進(jìn)行合并,計(jì)算分類和回歸結(jié)果。
GRU是LSTM的一種改進(jìn)模型,將遺忘門和輸入門集成為單一的更新門,同時(shí)混合了神經(jīng)元狀態(tài)和隱藏狀態(tài),可有效地緩解循環(huán)神經(jīng)網(wǎng)絡(luò)中“梯度消失”的問題,并能夠在保持訓(xùn)練效果的同時(shí)減少訓(xùn)練參數(shù)。
程序設(shè)計(jì)
- 完整程序和數(shù)據(jù)獲取方式:私信博主回復(fù)MATLAB實(shí)現(xiàn)WOA-CNN-BiGRU-Attention數(shù)據(jù)分類預(yù)測(cè);
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
參考資料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229