網(wǎng)站設(shè)計 重慶seoul是啥意思
目錄
- 證明直紋極小曲面是平面或者正螺旋面
證明直紋極小曲面是平面或者正螺旋面
證明:設(shè)極小直紋面 S S S的參數(shù)表示為 r ( u , v ) = a ( u ) + v c ( u ) . (u,v)=\mathbf{a}(u)+v\mathbf{c}(u). (u,v)=a(u)+vc(u).則
r u = a ′ + v c ′ , r v = c , r u ∧ r v = a ′ ∧ c + v c ′ ∧ c . \mathbf{r}_u=\mathbf{a}'+v\mathbf{c}',\quad\mathbf{r}_v=\mathbf{c},\quad\mathbf{r}_u\wedge\mathbf{r}_v=\mathbf{a}'\wedge\mathbf{c}+v\mathbf{c}'\wedge\mathbf{c}. ru?=a′+vc′,rv?=c,ru?∧rv?=a′∧c+vc′∧c.
故
E = ? a ′ , a ′ ? + v ? a ′ , c ′ ? + v 2 ? c ′ , c ′ ? , F = a ′ ∧ c + v c ′ ∧ c , G = ? c , c ? . E=\langle\mathbf{a}',\mathbf{a}'\rangle+v\langle\mathbf{a}',\mathbf{c}'\rangle+v^2\langle\mathbf{c}',\mathbf{c}'\rangle,\quad F=\mathbf{a}'\wedge\mathbf{c}+v\mathbf{c}'\wedge\mathbf{c},\quad G=\langle\mathbf{c},\mathbf{c}\rangle. E=?a′,a′?+v?a′,c′?+v2?c′,c′?,F=a′∧c+vc′∧c,G=?c,c?.
為 取 得 ( u , v ) ( u, v) (u,v) 是 正 交 參 數(shù) , 即 : F = 0 F= 0 F=0,可 以 假 設(shè) ∣ c ( u ) ∣ = 1 ; | \mathbf{c} ( u) | = 1; ∣c(u)∣=1; 然 后 , 經(jīng) 過 參 數(shù) 變 換 u ~ = u , v ~ = v + ∫ 0 u ? a ′ ( t ) , c ( t ) ? d t \widetilde{u} = u, \widetilde{v} = v+ \int _{0}^{u}\langle \mathbf{a} ^{\prime }( t) , \mathbf{c} ( t) \rangle dt u =u,v =v+∫0u??a′(t),c(t)?dt,可 以 設(shè) ? a ′ ( u ) , c ( u ) ? = 0. \langle \mathbf{a} ^{\prime }( u) , \mathbf{c} ( u) \rangle = 0. ?a′(u),c(u)?=0.
此 時 , F = 0 , F= 0 ,F=0,且 G = 1. G=1. G=1.記 Δ = ∣ r u ∧ r v ∣ . \Delta=|\mathbf{r}_u\wedge\mathbf{r}_v|. Δ=∣ru?∧rv?∣.
由
r u u = a ′ ′ + v c ′ ′ , r u v = c ′ , r v v = 0 , \mathbf{r}_{uu}=\mathbf{a}''+v\mathbf{c}'',\quad\mathbf{r}_{uv}=\mathbf{c}',\quad\mathbf{r}_{vv}=\mathbf{0}, ruu?=a′′+vc′′,ruv?=c′,rvv?=0,
有
L = 1 Δ [ ( a ′ ′ , a ′ , c ) + v ( ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) ) + v 2 ( c ′ ′ , c ′ , c ) ] , M = 1 Δ ( a ′ , c , c ′ ) , N = 0. L=\frac{1}{\Delta}[(\mathbf{a}'',\mathbf{a}',\mathbf{c})+v((\mathbf{a}',\mathbf{c},\mathbf{c}'')+(\mathbf{a}'',\mathbf{c}',\mathbf{c}))+v^2(\mathbf{c}'',\mathbf{c}',\mathbf{c})],\:M=\frac{1}{\Delta}(\mathbf{a}',\mathbf{c},\mathbf{c}'),\:N=0. L=Δ1?[(a′′,a′,c)+v((a′,c,c′′)+(a′′,c′,c))+v2(c′′,c′,c)],M=Δ1?(a′,c,c′),N=0.
曲面 S S S是極小的 ? H = 0 ? \Leftrightarrow H=0\Leftrightarrow ?H=0? 0 = Δ ( L G ? 2 M F + N E ) = ( a ′ ′ , a ′ , c ) + v ( ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) ) + v 2 ( c ′ ′ , c ′ , c ) 0=\Delta(LG-2MF+NE)=(\mathbf{a}^{\prime\prime},\mathbf{a}^{\prime},\mathbf{c})+v((\mathbf{a}^{\prime},\mathbf{c},\mathbf{c}^{\prime\prime})+(\mathbf{a}^{\prime\prime},\mathbf{c}^{\prime},\mathbf{c}))+v^2(\mathbf{c}^{\prime\prime},\mathbf{c}^{\prime},\mathbf{c}) 0=Δ(LG?2MF+NE)=(a′′,a′,c)+v((a′,c,c′′)+(a′′,c′,c))+v2(c′′,c′,c)
? \Leftrightarrow ?
{ ( a ′ ′ , a ′ , c ) = 0 ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) = 0 ( c ′ ′ , c ′ , c ) = 0. \left.\left\{\begin{array}{c}(\mathbf{a}'',\mathbf{a}',\mathbf{c})=0\\(\mathbf{a}',\mathbf{c},\mathbf{c}'')+(\mathbf{a}'',\mathbf{c}',\mathbf{c})=0\\(\mathbf{c}'',\mathbf{c}',\mathbf{c})=0.\end{array}\right.\right. ? ? ??(a′′,a′,c)=0(a′,c,c′′)+(a′′,c′,c)=0(c′′,c′,c)=0.?
由第三式,知 c ( u ) \mathfrak{c}(u) c(u)在某個平面上.而由假設(shè), c ( u ) \mathfrak{c}(u) c(u)是一條單位球面曲
線(注意 c ( u ) \mathbf{c}(u) c(u) 不能為常向量), 故 c ( u ) \mathbf{c}(u) c(u) 是一個單位圓.
若 a ( u ) \mathbf{a}(u) a(u)為常向量,則 S S S是平面. 現(xiàn)在假設(shè) a ( u ) \mathbf{a}(u) a(u)不為常向量,即:它是一條曲線。可以設(shè) u u u是曲線 a ( u ) \mathbf{a}(u) a(u)的弧長參數(shù),其 Frenet 標(biāo)架為 { a ( u ) ; t ( u ) , n ( u ) , b ( u ) } \{\mathbf{a}(u);\mathbf{t}(u),\mathbf{n}(u),\mathbf(u)\} {a(u);t(u),n(u),b(u)}, 其曲率為 κ ( u ) \kappa(u) κ(u),撓率為 τ ( u ) . \tau(u). τ(u).由式-(14) 中第一式,有
0 = ( a ′ ′ , a ′ , c ) = κ ( n , t , c ) = ? κ ? b , c ? . 0= ( \mathbf{a} ^{\prime \prime }, \mathbf{a} ^{\prime }, \mathbf{c} ) = \kappa ( \mathbf{n} , \mathbf{t} , \mathbf{c} ) = - \kappa \langle \mathbf , \mathbf{c} \rangle . 0=(a′′,a′,c)=κ(n,t,c)=?κ?b,c?. C O M COM COM
若 κ = 0 \kappa=0 κ=0,則 a ( u ) \mathbf{a}(u) a(u)是直線.而 c ( u ) \mathbf{c}(u) c(u)是一個單位圓.可以設(shè)
a ( u ) = ( 0 , 0 , b u ) . \mathbf{a}(u)=(0,0,bu). a(u)=(0,0,bu).
由假設(shè) t ⊥ c ( u ) \mathbf{t}\perp\mathbf{c}(u) t⊥c(u),故
c ( u ) = ( cos ? u , sin ? u , 0 ) . \mathbf{c}(u)=(\cos u,\sin u,0). c(u)=(cosu,sinu,0).
從而,曲面 S S S的參數(shù)表達式為
r ( u , v ) = a ( u ) + v c ( u ) = ( v cos ? u , v sin ? u , b u ) . \mathbf{r}(u,v)=\mathbf{a}(u)+v\mathbf{c}(u)=(v\cos u,v\sin u,bu). r(u,v)=a(u)+vc(u)=(vcosu,vsinu,bu).
即:曲面 S S S 為正螺旋面.
若 κ \kappa κ不恒為0,只需考慮 κ ≠ 0 \kappa\neq0 κ=0的部分,則 ? b , c ? = 0. \langle\mathbf,\mathbf{c}\rangle=0. ?b,c?=0.而由假設(shè), ? t , c ? = 0. \langle\mathbf{t},\mathbf{c}\rangle=0. ?t,c?=0.
故 c = ± n . \mathbf{c}=\pm\mathbf{n}. c=±n.從而,可以設(shè) c = n . \mathbf{c}=\mathbf{n}. c=n.由式-(14)中第二式,有
0 = ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) = ( t , n , n ¨ ) + ( t ˙ , n ˙ , n ) = τ ˙ . 0=(\mathbf{a'},\mathbf{c},\mathbf{c''})+(\mathbf{a''},\mathbf{c'},\mathbf{c})=(\mathbf{t},\mathbf{n},\ddot{\mathbf{n}})+(\dot{\mathbf{t}},\dot{\mathbf{n}},\mathbf{n})=\dot{\tau}. 0=(a′,c,c′′)+(a′′,c′,c)=(t,n,n¨)+(t˙,n˙,n)=τ˙.
故 τ \tau τ 是常數(shù).
若 τ = 0 \tau=0 τ=0, 則 a ( u ) \mathbf{a}(u) a(u) 為平面曲線.而 c = n \mathbf{c}=\mathbf{n} c=n 是其(主)法向量,故 S S S 是平面,
若 τ ≠ 0 \tau\neq0 τ=0,則由式-(14)中第三式,有
0 = ( c ′ ′ , c ′ , c ) = ( n ¨ , n ˙ , n ) = κ ˙ τ . 0=(\mathbf{c''},\mathbf{c'},\mathbf{c})=(\ddot{\mathbf{n}},\dot{\mathbf{n}},\mathbf{n})=\dot{\kappa}\tau. 0=(c′′,c′,c)=(n¨,n˙,n)=κ˙τ.
因此 , κ ˙ = 0 ,\dot{\kappa}=0 ,κ˙=0,即: κ \kappa κ為常數(shù).故 a ( u ) \mathbf{a}(u) a(u) 是圓柱螺旋線.
可以設(shè)
a ( u ) = ( κ κ 2 + τ 2 cos ? ( κ 2 + τ 2 u ) , κ κ 2 + τ 2 sin ? ( κ 2 + τ 2 u ) , τ κ 2 + τ 2 u ) \mathbf{a}(u)=(\frac{\kappa}{\kappa^2+\tau^2}\cos(\sqrt{\kappa^2+\tau^2}u),\frac{\kappa}{\kappa^2+\tau^2}\sin(\sqrt{\kappa^2+\tau^2}u),\frac{\tau}{\sqrt{\kappa^2+\tau^2}}u) a(u)=(κ2+τ2κ?cos(κ2+τ2?u),κ2+τ2κ?sin(κ2+τ2?u),κ2+τ2?τ?u)
則
c ( u ) = n ( u ) = ( ? cos ? ( κ 2 + τ 2 u ) , ? sin ? ( κ 2 + τ 2 u ) , 0 ) . \mathbf{c}(u)=\mathbf{n}(u)=(-\cos(\sqrt{\kappa^2+\tau^2}u),-\sin(\sqrt{\kappa^2+\tau^2}u),0). c(u)=n(u)=(?cos(κ2+τ2?u),?sin(κ2+τ2?u),0).
故
r ( u , v ) = a ( u ) + v c ( u ) = ( ( κ κ 2 + τ 2 ? v ) cos ? ( κ 2 + τ 2 u ) , ( κ κ 2 + τ 2 ? v ) sin ? ( κ 2 + τ 2 u ) , τ κ 2 + τ 2 u ) . \begin{aligned}\mathbf{r}(u,v)&=\mathbf{a}(u)+v\mathbf{c}(u)=((\frac{\kappa}{\kappa^{2}+\tau^{2}}-v)\cos(\sqrt{\kappa^{2}+\tau^{2}}u),\\&(\frac{\kappa}{\kappa^{2}+\tau^{2}}-v)\sin(\sqrt{\kappa^{2}+\tau^{2}}u),\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}u).\end{aligned} r(u,v)?=a(u)+vc(u)=((κ2+τ2κ??v)cos(κ2+τ2?u),(κ2+τ2κ??v)sin(κ2+τ2?u),κ2+τ2?τ?u).?
作參數(shù)變換 v ~ = κ 2 + τ 2 u , u ~ = κ κ 2 + τ 2 ? v \widetilde{v}=\sqrt{\kappa^2+\tau^2}u,\widetilde{u}=\frac\kappa{\kappa^2+\tau^2}-v v =κ2+τ2?u,u =κ2+τ2κ??v,則曲面 S S S的參數(shù)表達式變?yōu)?/p>
r ( u ~ , v ~ ) = ( u ~ cos ? v ~ , u ~ sin ? v ~ , τ κ 2 + τ 2 v ~ ) . \mathbf{r}(\widetilde u,\widetilde v)=(\widetilde u\cos\widetilde v,\widetilde u\sin\widetilde v,\frac{\tau}{\kappa^2+\tau^2}\widetilde v). r(u ,v )=(u cosv ,u sinv ,κ2+τ2τ?v ).
故曲面 S S S 是正螺旋面.