網(wǎng)站開發(fā)驗(yàn)收單8大營銷工具指的是哪些
背景
本文基于
Spark 3.1.1
open-jdk-1.8.0.352
目前在排查 Spark 任務(wù)的時(shí)候,遇到了一個(gè)很奇怪的問題,在此記錄一下。
現(xiàn)象描述
一個(gè) Spark Application, Driver端的內(nèi)存為 5GB,一直以來都是能正常調(diào)度運(yùn)行,突然有一天,報(bào)錯(cuò)了:
Caused by: org.apache.spark.sql.catalyst.errors.package$TreeNodeException: execute, tree:
Exchange hashpartitioning(user_lable_id#530L, 500), ENSURE_REQUIREMENTS, [id=#1564]
+- *(16) Project [xxx]+- *(16) BroadcastHashJoin ...+- *(14) ColumnarToRow+- FileScan parquet xxxat org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.doExecute(ShuffleExchangeExec.scala:169)at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)at org.apache.spark.sql.execution.SortExec.inputRDDs(SortExec.scala:132)at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)at org.apache.spark.sql.execution.InputAdapter.doExecute(WholeStageCodegenExec.scala:511)at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)at org.apache.spark.sql.execution.joins.SortMergeJoinExec.inputRDDs(SortMergeJoinExec.scala:378)at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:50)at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:123)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:123)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency$lzycompute(ShuffleExchangeExec.scala:157)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency(ShuffleExchangeExec.scala:155)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.$anonfun$doExecute$1(ShuffleExchangeExec.scala:172)at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)... 291 more
Caused by: java.util.concurrent.ExecutionException: org.apache.spark.util.SparkFatalExceptionat java.util.concurrent.FutureTask.report(FutureTask.java:122)at java.util.concurrent.FutureTask.get(FutureTask.java:206)at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:199)at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:515)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeBroadcast$1(SparkPlan.scala:193)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:189)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:203)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareRelation(BroadcastHashJoinExec.scala:217)at org.apache.spark.sql.execution.joins.HashJoin.codegenOuter(HashJoin.scala:497)at org.apache.spark.sql.execution.joins.HashJoin.codegenOuter$(HashJoin.scala:496)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenOuter(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.joins.HashJoin.doConsume(HashJoin.scala:352)at org.apache.spark.sql.execution.joins.HashJoin.doConsume$(HashJoin.scala:349)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:194)at org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:149)at org.apache.spark.sql.execution.ProjectExec.consume(basicPhysicalOperators.scala:41)at org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:87)at org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:194)at org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:149)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.consume(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.joins.HashJoin.codegenOuter(HashJoin.scala:542)at org.apache.spark.sql.execution.joins.HashJoin.codegenOuter$(HashJoin.scala:496)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenOuter(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.joins.HashJoin.doConsume(HashJoin.scala:352)at org.apache.spark.sql.execution.joins.HashJoin.doConsume$(HashJoin.scala:349)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:194)at org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:149)at org.apache.spark.sql.execution.ProjectExec.consume(basicPhysicalOperators.scala:41)at org.apache.spark.sql.execution.ProjectExec.doConsume(basicPhysicalOperators.scala:87)at org.apache.spark.sql.execution.CodegenSupport.consume(WholeStageCodegenExec.scala:194)at org.apache.spark.sql.execution.CodegenSupport.consume$(WholeStageCodegenExec.scala:149)at org.apache.spark.sql.execution.InputAdapter.consume(WholeStageCodegenExec.scala:496)at org.apache.spark.sql.execution.InputRDDCodegen.doProduce(WholeStageCodegenExec.scala:483)at org.apache.spark.sql.execution.InputRDDCodegen.doProduce$(WholeStageCodegenExec.scala:456)at org.apache.spark.sql.execution.InputAdapter.doProduce(WholeStageCodegenExec.scala:496)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.InputAdapter.produce(WholeStageCodegenExec.scala:496)at org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:54)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:41)at org.apache.spark.sql.execution.joins.HashJoin.doProduce(HashJoin.scala:346)at org.apache.spark.sql.execution.joins.HashJoin.doProduce$(HashJoin.scala:345)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doProduce(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.produce(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:54)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:41)at org.apache.spark.sql.execution.joins.HashJoin.doProduce(HashJoin.scala:346)at org.apache.spark.sql.execution.joins.HashJoin.doProduce$(HashJoin.scala:345)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doProduce(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.produce(BroadcastHashJoinExec.scala:40)at org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:54)at org.apache.spark.sql.execution.CodegenSupport.$anonfun$produce$1(WholeStageCodegenExec.scala:95)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.CodegenSupport.produce(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.CodegenSupport.produce$(WholeStageCodegenExec.scala:90)at org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:41)at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:655)at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:718)at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:180)at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:218)at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:215)at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:176)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:123)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:123)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency$lzycompute(ShuffleExchangeExec.scala:157)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.shuffleDependency(ShuffleExchangeExec.scala:155)at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.$anonfun$doExecute$1(ShuffleExchangeExec.scala:172)at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)... 328 more
Caused by: org.apache.spark.util.SparkFatalExceptionat org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.$anonfun$relationFuture$1(BroadcastExchangeExec.scala:173)at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withThreadLocalCaptured$1(SQLExecution.scala:190)at java.util.concurrent.FutureTask.run(FutureTask.java:266)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:750)
注意:處于安全考慮,本文隱藏了具體的物理執(zhí)行計(jì)劃
對于一個(gè)在大數(shù)據(jù)行業(yè)摸爬滾打了多年的老手來說,第一眼肯定是跟著堆棧信息進(jìn)行排查,
理所當(dāng)然的就是會找到BroadcastExchangeExec
這個(gè)類,但是就算把代碼全看一遍也不會有所發(fā)現(xiàn)。
驀然回首
這個(gè)問題折騰了我大約2個(gè)小時(shí),錯(cuò)誤發(fā)生的上下文都看了不止十遍了,還是沒找到一絲頭緒,可能是上帝的旨意,在離錯(cuò)誤不到50行的地方,剛好是一個(gè)頁面的距離,發(fā)現(xiàn)了以下錯(cuò)誤:
53.024: [Full GC (Ergonomics) [PSYoungGen: 802227K->698101K(1191424K)] [ParOldGen: 3085945K->3085781K(3495424K)] 3888173K->3783883K(4686848K), [Metaspace: 135862K->135862K(1185792K)], 0.9651630 secs] [Times: user=25.51 sys=0.39, real=0.96 secs]
53.990: [Full GC (Allocation Failure) [PSYoungGen: 698101K->698047K(1191424K)] [ParOldGen: 3085781K->3079721K(3495424K)] 3783883K->3777769K(4686848K), [Metaspace: 135862K->134900K(1185792K)], 0.6236139 secs] [Times: user=14.05 sys=0.28, real=0.63 secs]
java.lang.OutOfMemoryError: Java heap space
Dumping heap to panda_dump ...
Heap dump file created [3938522340 bytes in 5.708 secs]
真是 眾人尋他千百度,驀然回首, 沒想到是 OOM 問題。
結(jié)論
在查找錯(cuò)誤的時(shí)候,還是得在錯(cuò)誤的上下文中多翻幾頁。